Administration of Project: Local Higher Education

Project Name: Campus Master Plan - Uptown 2017
Response Deadline: Friday, 08/25/17 3:00 pm local time
Project Number: UCN-17183A

City / County: Cincinnati / Hamilton
Owner: University of Cincinnati

Project Manager: Mary Beth McGrew
Sr. Associate Vice President
Planning+Design+Construction & University Architect
AIA, NCARB, LEED AP

Contracting Authority: Local Higher Education

No. of paper copies requested (stapled, not bound): Four
No. of electronic copies requested (PDF): One

Submit the requested number of Statements of Qualifications (Form F110-330) directly to Mary Beth McGrew, Sr. Associate Vice President for Planning+Design+Construction at MaryBeth.McGrew@uc.edu or University Hall, 51 Goodman Drive, Suite 600, Cincinnati, OH 45221. See Section H of this RFQ for additional submittal instructions.

Submit all questions regarding this RFQ in writing to Mary Beth McGrew at MaryBeth.McGrew@uc.edu with the project number included in the subject line (no phone calls please). Questions will be answered and posted to the Opportunities page on the OFCC website at http://ofcc.ohio.gov on a regular basis until one week before the response deadline. The name of the party submitting a question will not be included on the Q&A document.

Project Overview

A. Project Description

The University of Cincinnati is requesting written responses to this Request for Qualifications (RFQ) for the purpose of selecting a master planning firm to assemble a Comprehensive Campus Master Plan for its main campus in the Uptown neighborhoods of the City of Cincinnati. The university’s last master plan for the main campus - assembled and written by Hargreaves Associates and adopted in 2000 - was highly acclaimed and mostly implemented in buildings and open spaces that themselves have received wide international acclaim. Since 2000, the campus has grown in population, new buildings have been constructed, and rehabilitation of a few of the older buildings on the campus has been completed. In addition, the academic drivers that the campus must support, as well as the surrounding neighborhoods, have evolved. The university has long developed and has historically enjoyed cooperative, responsive, and mutually respectful working relationships with the City of Cincinnati and with neighborhood advocacy groups that the university wishes to maintain.

The new campus master plan will review the current plan and existing information and will stitch together into a comprehensive whole a variety of focused planning studies that have been completed by different specialists. The selected Firm will help the Sr. Associate Vice President for Planning+Design+Construction (Sr. AVP) articulate a broad framework that will become the core content of the new plan. Consisting of drawings, supporting tables, and text, the framework will support planning goals and principles that the university will provide and refine with the firm, and that will guide near- and long-term institutional decision-making for land and building uses, physical development plans, campus mobility plans, quality and character of the campus along its edges, and other overall broad planning goals.

While some areas of the current plan require only minor updates, other areas of the current plan require significant revision or adaptation in order to incorporate the recommendations and observations of the existing studies.

Master Plan services are being solicited in two parts and for optional services. In Part One, the selected Firm will review existing data and studies that will be provided to the selected Firm; and the Firm will develop with the Sr. AVP a work plan for the implementation of Plan Content that will be determined in Part One. Plan Content will be completed in Part Two and as part of Optional Services if any are selected by the university. The university reserves the right to contract with the selected Firm for one or both parts; to select one or more or none of the optional services; or to re-advertise for services at the completion of Part One. The professional services that are anticipated include but are not limited to those that are identified in Section D of this RFQ. Firms interested in responding to this RFQ are required to submit the State of Ohio’s Statement of Qualifications (SOQ) form F110-330. Firms may choose to submit as a collaborative team, but all Firms must identify a prime lead.

About the University of Cincinnati

Led by a newly-appointed President, Dr. Neville Pinto, the University of Cincinnati is a comprehensive, research-intense, doctoral-granting institution with an enrollment of over 45,000 students. The institution traces its origins to 1819, located
to its present campus in the late 1890’s, and is considered to be one of the oldest municipally-formed institutions of higher education in the US. The university’s original main campus today consists of an East and a West portion that are located within the City of Cincinnati’s Uptown neighborhoods that comprise some of the city’s oldest first-ring suburbs. The university also owns and operates two regional campuses, one in suburban Blue Ash and the other in the more rural Clermont County. The university also operates a number of small satellite campuses, dispersed in the immediate urban area and in within rural settings in the Greater Cincinnati region. UC became state-owned in the late 1970’s. While no university property is located within a historic district or possesses any historic designations other than two observatory buildings in an eastern suburb of Cincinnati and Logan Hall (“General Hospital Nurses’ Home”) on the East campus, it is the noteworthy work of transformational professionals - Peter Eisenman, Frank Gehry, Bernard Tschumi, and Thom Mayne to name a few – that has transformed the campus and given it its contemporary acclaim. Further information and facts about the University of Cincinnati are included in the “Basic Fact Sheet” attached to this RFQ.

History of the University, and History of Campus Master Planning at UC
Please refer to the attached copy of the 2008 Campus Heritage Plan for this information. The Heritage Plan by its nature outlines approaches to preservation and makes policy recommendations, and contains a contemporary critique of the current master plan. Any necessary revisions to and the application of the ideas in the Heritage Plan to the new Master Plan will be reviewed with the selected Firm during the early stages of the planning process.

B. Scope of Services

Refer to the Ohio Facilities Construction Manual for additional information about the type and extent of services required for each. A copy of the standard Agreement can be obtained at the OFCC website at http://ofcc.ohio.gov.

The selected Firm shall provide the following anticipated services for the Master Plan. In responding to this RFQ, all firms should use this information to populate the Relevant Project Experience Matrix in Section F of Form F110-330.

Part One Services - Develop a Work Plan & an Outline for a New Campus Master Plan on a Built-Out Urban Campus

1. Prior to submitting its proposals, discuss and clarify with the university, the cost breakdown of the Agreement to address the Owner’s project requirements.

2. Walk both portions of the main campus including key open spaces and buildings, and tour surrounding neighborhoods, and become generally familiar with their current conditions and existing characteristics.

3. Review and become familiar with existing information including studies that the university will provide to the selected firm at the start of the master planning process. The attached Appendix provides an example of the type of information that will be made available.

4. Conduct Two All-Day Workshops:
 a. Day One: With the Sr. AVP and the Campus Master Plan Working Group, clarify university-provided existing condition data and information.
 b. Day Two: With the Sr. AVP and relevant representation of the Campus Master Plan Working Group, and with the Sr. Vice Provost, clarify existing studies and planning goals and principles, and test the big institutional ideas and planning goals and principles that support them.

5. Meet with the Sr. AVP to:
 a. Recommend the Campus Master Plan work plan including milestone dates, roles, key tasks and assignments, and plan deliverables.
 b. Confirm the graphic standards that will be used for draft and final products including drawings and information graphics.
 c. Confirm the university’s expected protocols for the conduct of & assigned roles for meetings and for the flow of information, submittals, and communications.

Part Two Services - Prepare & Deliver Campus Master Plan Content (below is subject to change based on the outcome of Part One)

1. Develop a draft and a final framework - including drawings, supporting tables, and text that includes:
 i. Formatting of University-Provided Existing Conditions
 i. Aerial Image
 ii. Baseline Drawing of Buildings, Open Spaces, Roads, Drives, & Walkways
 iii. Land & Building Uses: i.e. Academic, Research, Student/Faculty Services, Athletics & Recreation, Meetings & Events, Housing On- & Off-Campus, Food Service, Parking.
vi. Current Campus Move Migration Initiatives
vii. Tentative Institutional Strategic Plans or Initiatives
viii. Space Utilization Rates & Patterns (Classrooms, Research, Offices, Housing, Food, Parking)
ix. Current Campus Sustainability Initiatives
x. View Corridors
xii. Campus Mobility Plans: Walking; Bicycles; Shuttles, Area Transit, & Rental Vehicles; Building Access, Service Vehicles; Parking; & Neighborhood Streets, Major Urban Corridors, State Routes & Interstate Highways.

xiii. Campus Identity: Gateways, Directional Signage, Building Exterior Signage
v. Quality and Character of Campus Edges
vi. Alternative Approaches to Neighborhood Development
vii. Campus Sustainability Overlay
viii. Recommended Campus Mobility Plans.
ix. Large-Scale Strategies for Managing Space Migration Plans to Support Current and Strategic Goals.
x. Campus Growth
xi. Recommended placement & massing of new construction; recommended building rehabilitations, renovations, adaptive re-use, and preservations in-whole or in-part. Incorporate the defined capital needs and future building sites into the physical plan.

xii. Campus Identity: In-depth assessment of current campus wayfinding signage and standards. Develop a palette of recommended gateway materials, develop a set of guidelines for electronic signage and advertising, and recommend revisions to the current signage guidelines.

xiii. Recommended evolution and/or protection of landscapes & open spaces.

2. Conduct All-Day Vetting Workshops with the Sr. AVP and Campus Master Plan Working Group:
 i. Workshop 1: Review a draft of formatted existing conditions information; and review and discuss the approach to the Proposed Plan.
 ii. Workshop 2: Review a draft of the Proposed Plan.

3. Prepare and Distribute Draft and Final Plan Document to the Sr. AVP. Includes professional document layout and design, and assembly of all drawings, graphics, photos and images, tables, and accompanying text and appendices into one coherent document that the university will publish. The University of Cincinnati has a long history of excellence in publication quality. The selected Firm will be expected to maintain the university’s reputation for producing and publishing master plan documents that are visually well-designed and that can stand alone for their artful content and clear prose.

Optional Services
1. Existing Conditions Assessments: For the purpose of augmenting or to provide needed baseline data, attend information interview sessions with university personnel responsible for certain aspects of the physical campus, and provide information and recommendations.

2. Proposed Plan - Develop Program-Level Space Migration Plans.

3. Campus Master Plan Document Writing & Production: Includes writing the Existing Conditions and Proposed Plan sections of the Campus Master Plan document.

4. Academic Planning to identify potential gaps in the current academic plan.

General Execution of the Work
The selected Firm will take their lead from the Sr. AVP to refine the Campus Master Plan work plan and to confirm and prepare core content and plan deliverables.
The selected Firm will take their lead from the Campus Master Plan Working Group assembled by the Sr. AVP to clarify all university-provided information including existing studies, and planning goals and principles.

It is expected that the selected Firm will not be meeting with institutional leadership for the purpose of developing or presenting the Firm’s recommendations or for obtaining institutional approvals of the Master Plan.

Project Deliverables
All master plan deliverables shall be presented in a format acceptable to the university. All documents shall be provided as electronic files and in both PDF and original native file formats (Word, Excel, Illustrator, Photoshop, AutoCAD, PowerPoint, InDesign, etc.) for the final Master Plan document. Interim review submittals will typically be required in both high-resolution and low-resolution formats and occasionally in native file format also. All files and documents that the Firm submits to the university for interim reviews shall be emailed, or posted electronically to a cloud-based university-administered system, no later than 72 hours in advance of established review or topic discussion dates. Electronic documents will need to be provided in both high-resolution format (for printing and archives) and low-resolution format (for distribution and online posting).

The university will determine the number of printed copies that will be required and will make arrangements for reproducing them at UC’s cost as-needed for both interim reviews during the planning process and for final distribution after the Campus Master Plan has been completed.

Photographs and images shall be provided in resolutions and file sizes approved by the university. The selected Firm shall obtain and provide to the university all necessary written releases for usage and credits or source citations for all photographs and images provided during the planning process and within the master planning documents.

In addition to possessing a long history of producing well-executed master plan documents, the university possesses a long history of participating in the formulation of the content of these documents and of the ideas they imbue. The university therefore expects to review and edit the Firm’s draft and final plan document; and to publish the work at the completion of the planning process. The university will not allow the Firm to brand any of the work completed for the Plan; and all documents and files produced for and during the planning process shall become the exclusive property of the University of Cincinnati.

C. Funding / Estimated Budget

<table>
<thead>
<tr>
<th>Total Project Cost</th>
<th>State Funding</th>
<th>Other Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100,000 (Part One)</td>
<td>$0</td>
<td>$500,000</td>
</tr>
<tr>
<td>$400,000 (Part Two)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Services Required (see note below)

| Primary Planning or Landscape Architecture |
| Secondary Landscape Architecture |
| Document Graphic Design, Assembly & Writing |
| Wayfinding |
| Others |

E. Anticipated Schedule

| Planning Services Start | 09 / 2017 |
| Planning Services Completed | 01 / 2019 |

F. EDGE Participation Goal

| Percent of initial TOTAL Planning Fee | to be determined% |

G. Evaluation Criteria for Selection

In their responses to this RFQ, Firms should clearly identify the following:

- Ability to work with a variety of existing information and studies, to incorporate given information and criteria, and to listen to and to take direction from university personnel assigned to provide direction to the selected Firm.
- The structure of the proposed team including sub-consultants, and the roles and responsibilities for each sub-consultant and for each of the key personnel from each sub-consultant.
- Depth and breadth of relevant previous campus master planning experience including size, scope, start and completion date of plans completed, and the roles of the firm in each.
- The firm’s planning approach for a master plan of this type, including the team’s methodology and techniques.
• Relevant past work of the prospective firm’s proposed consultants.
• Past performance of the prospective Firm and its proposed consultants.
• Prospective Firm’s previous experience (numbers of projects, sizes of projects) working with its proposed consultants.
• Qualifications and experience of individuals who will be directly involved with the project. Do not submit information about other branch offices or other firm personnel that are not proposed to be involved in this project. Personnel not listed in the firm’s responses, and without qualifications submitted, will not be permitted by the university to work on the project, and will be grounds for termination of the firm’s contract with the university.
• Quality of Plan document layout, design, and publication quality including writing, information graphics, color palette, drawings and illustrations, and photographs. All firms short-listed for an interview will be required to bring examples of completed documents and to explain their typical document layout strategy and document development methodology.
• Proximity of prospective firms to the project site. Firms with multiple office locations shall clearly state in their responses which office location will be performing the work. Failure to clarify this in the SOQ will be grounds for disqualification.
• Prospective Firm’s apparent resources and capacity to meet the needs of this project.
• The selected Firm and all its consultants must have the capability to use the Internet within their normal business location(s) during normal business hours.
• Demonstrated ability to meet Owner’s budget, and schedule on previous projects.
• Firms are requested to identify professional registrations, memberships, and any other appropriate industry credentials; and are to identify that information on the resume page for individual in Block 22, Section E of the F110-330 form.

The following are clarifications to the Planning Services Selection Rating Form on page 7 of this RFQ:
• All firm evaluations will be scored best out of 95 points.
• Item 1.a, Proximity of firm to project site. Proximity is not a consideration.
• Item 2.b, Assessment Lead. Assessments are optional services of the Master Plan, and can be planning or landscape architecture disciplines.

H. Submittal Instructions

All questions or communications about this RFQ are to be directed to the Project Manager designated in this RFQ. Attempts by Firms or any consultants or sub-consultants to contact or communicate with any other university personnel or official other than the Project Manager about this RFQ will be grounds for disqualification.

Firms are required to submit the current version of the Statement of Qualifications (Form F110-330) available via the OFCC website at http://ofcc.ohio.gov.

Electronic submittals should be combined into one PDF file named with the project number listed on the RFQ and the Firm’s name. Use the “print” feature of Adobe Acrobat or similar software for creating a PDF rather than using a scanner. If possible, please reduce the file size of the PDF. In Acrobat, go to Advanced, then PDF Optimizer. Also, please label the CD or DVD and sleeve with the project number and firm name if applicable.

Paper copies of the Statement of Qualifications should be in 8.5” x 11” format double-sided, and stapled only. Do not use special bindings or coverings of any type. Cover letters and transmittals are not necessary.

Facsimile copies of the Statement of Qualifications will not be accepted.

Any portion of a Firm’s response considered exempt from disclosure under the Public Records Act should be clearly marked and accompanied with an explanation of the legal authority supporting this assertion.

Failure to submit in the required format may be grounds for rejection of a Firm’s qualifications.

Pre-Interview Meeting & Site Visit:
Firms short-listed for interviews will be invited to an optional informational meeting and site visit, to be held on campus approximately two weeks prior to the interview date. This Pre-Interview Meeting and virtual tour of the main campus will be conducted by assigned university staff and may be attended by members of the selection committee. The assigned staff will provide a fixed-agenda overview and explanation of the key goals and outcomes expected from the master planning process, and will present a virtual tour of the main campus and will provide appropriate commentary about the university. Short-listed firms may tour UC’s main campus and public areas of buildings at their option and at times of their convenience. University personnel or officials of the university will NOT be available for personalized tours or meetings with each short-listed firm. Attempts by Firms, consultants, or sub-consultants to contact or communicate with any
university personnel or official other than the Project Manager will be grounds for disqualification. Any relevant clarifications deemed necessary by the Project Manager will be issued in writing, to all firms, via the OFCC website.

Supplemental Documents for UCN-17183A:

ATT 1 – UC Fact Sheet
ATT 2 - RFQ Appendix
ATT 3 - Campus Heritage Plan
ATT 4 - Campus Heritage Plan Appendixes
Planning Services Selection Rating Form

State of Ohio Standard Forms and Documents

Project Name: Campus Master Plan - Uptown 2017
Project Number: 17183A
Proposer Firm

Selection Criteria

1. Firm Location, Workload and Size (Maximum 15 points)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Proximity of firm to project site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 100 miles</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>100 to 200 miles</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>More than 200 miles</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>b. Amount of fees awarded by Contracting Authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $50,000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$50,000 to $100,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>More than $100,000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c. Number of relevant professionals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 5 planning professionals</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 to 9 planning professionals</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>More than 9 planning professionals</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

2. Primary Qualifications (Maximum 30 points)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Master planning lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience / ability of lead master planner to manage visioning / capital improvement plans</td>
<td>0 - 10</td>
<td></td>
</tr>
<tr>
<td>b. Assessment lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience / ability of lead to manage assessors of various disciplines</td>
<td>0 - 5</td>
<td></td>
</tr>
<tr>
<td>Max = 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Planning staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience / ability of planning staff to develop long range master plans</td>
<td>0 - 10</td>
<td></td>
</tr>
<tr>
<td>d. Technical staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience / ability of assessors to accurately collect data and evaluate systems and components</td>
<td>0 - 5</td>
<td></td>
</tr>
</tbody>
</table>

3. Sub-Consultant Qualifications (Maximum 10 points)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key discipline leads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience / ability of all key discipline leads to effectively perform the services</td>
<td>0 - 10</td>
<td></td>
</tr>
</tbody>
</table>

4. Project Team Qualifications (Maximum 15 points)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Previous team collaboration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 2 projects (Low)</td>
<td>0</td>
<td>Max = 5</td>
</tr>
<tr>
<td>2 to 4 projects (Average)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>More than 4 projects (High)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>b. LEED* Registered / Certified consultant participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No projects</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Registered</td>
<td>2</td>
<td>Max = 5</td>
</tr>
<tr>
<td>Certified</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>c. Team Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity of responsibility / communication demonstrated by table of organization</td>
<td>0 - 5</td>
<td></td>
</tr>
</tbody>
</table>

5. Overall Project Team Experience (Maximum 30 points)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Criteria development and prioritization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance in establishing owner criteria for capital improvement plans</td>
<td>0 - 10</td>
<td></td>
</tr>
<tr>
<td>b. Experience with similar planning projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 6 projects (Low)</td>
<td>0 - 3</td>
<td></td>
</tr>
<tr>
<td>6 to 9 projects (Average)</td>
<td>4 - 6</td>
<td></td>
</tr>
<tr>
<td>More than 9 projects (High)</td>
<td>7 - 10</td>
<td></td>
</tr>
<tr>
<td>c. Past performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of performance as indicated by past evaluations / letters of reference</td>
<td>0 - 10</td>
<td></td>
</tr>
</tbody>
</table>

* LEED = Leadership in Energy & Environmental Design developed by the U.S. Green Building Council

Subtotal

Notes:

Evaluator:

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

F130-07-2015-SEP
Publish Date: 08/02/17; Ohio Register #288
Page 7 of 7
HISTORY IN BRIEF
The University of Cincinnati, Ohio's premier urban research university, traces its origins to 1819. In that year both Cincinnati College and the Medical College of Ohio were chartered. In 1870, the City of Cincinnati established the University of Cincinnati, which later absorbed the two predecessor institutions. In 1906, the University of Cincinnati created the first cooperative education program in the world. For many years, the University of Cincinnati was the second oldest and second largest municipal university in the country. In 1968, UC became a “municipally sponsored, state affiliated” institution, entering a transitional period culminating on July 1, 1977 when UC joined the university system of Ohio. Today, the University of Cincinnati is classified as a Research University (Very High Research Activity) by the Carnegie Commission, and is ranked as one of America's top 30 public research universities by the National Science Foundation. U.S. News has ranked UC in the Top Tier of America's Best Colleges; The Chronicle of Higher Education has called UC a “research heavyweight,” and UC has consistently been named a “green university” by Princeton Review. The New York Times, Forbes, Delta Sky and Travel + Leisure magazines have highlighted UC as one of the world's most beautiful campuses. Most recently, the Sept. 13, 2015, New York Times Magazine contained an eight-page spread of images on the university's architecture, calling the dramatic campus renovation of the past quarter century “the most ambitious campus-design program in the country.”

UNIVERSITY OF CINCINNATI FACULTY & ALUMNI
Among the historic faculty or alumni of the University of Cincinnati are found President and later Chief Justice William Howard Taft; Albert Sabin, developer of the oral polio vaccine; Nobel Peace Prize winner and U.S. Vice President Charles G. Dawes; Pulitzer Prize-winning cartoonist Walt Handelsman; Doris Twitchell Allen, founder of Children's International Summer Village; astronaut Neil Armstrong; soprano Kathleen Battle; Cleveland Abbe, whose work at UC led to the National Weather Service; Eula Bingham, environmental scientist and head of OSHA; Marilyn Gaston, assistant surgeon general; author Thomas Berger (Little Big Man, Neighbors); prima ballerina Suzanne Farrell; sports greats Sandy Koufax, Kevin Youkilis, Oscar Robertson, Jack Twyman and Tony Trabert; architect Michael Graves and eco-architect Michael Reynolds; artists Tom Wesselmann and Gilbert Young; Tony Award winner Faith Prince; Douglas Dayton, who helped design Apple’s original mouse; Vinod Dham, father of the Pentium chip; and Louise McCarren Herring, the mother of credit unions. The number of living alumni of the University (2014) is counted at more than 270,000 with approximately half (more than 131,000) residing in the greater Cincinnati area.

MISSION STATEMENT
The University of Cincinnati serves the people of Ohio, the nation, and the world as a premier, public, urban research university dedicated to undergraduate, graduate, and professional education, experience-based learning, and research. We are committed to excellence and diversity in our students, faculty, staff, and all of our activities. We provide an inclusive environment where innovation and freedom of intellectual inquiry flourish. Through scholarship, service, partnerships, and leadership, we create opportunity, develop educated and engaged citizens, enhance the economy and enrich our University, city, state and global community.

LEADERSHIP
• Robert E. Richardson Jr., Chair, Board of Trustees
• Beverly Davenport, Interim President

For more information about UC, contact:
M.B. Reilly, Director of Public Relations
(513) 556-1824, reillymb@ucmail.uc.edu

UC FIRSTS
• First program of cooperative education – Herman Schneider (1906)
• First oral polio vaccine – Albert Sabin
• First observations leading to the National Weather Service – Cleveland Abbe
• First antihistamine, Benadryl – George Rieveschl
• First heart-lung machine – Samuel Kaplan, Leland Clark and James Helmsworth
• First electronic organ – Winston Koch
• First use of YAG laser to remove brain tumor
• First bachelor's degree program in nursing
• First emergency medicine residency program
• First safe anti-knock gasoline
• First degree program offered via satellite
UC'S COLLEGES
McMicken College of Arts & Sciences
College of Allied Health Sciences
Carl H. Lindner College of Business
UC Clermont College
College-Conservatory of Music
College of Design, Architecture, Art & Planning
College of Education, Criminal Justice, and Human Services
College of Engineering & Applied Science
College of Law
College of Medicine
College of Nursing
James L. Winkle College of Pharmacy
UC Blue Ash College
Graduate School

PROGRAMS OF STUDY (2015)
Associate (A.A., A.A.S., A.G.S., etc.) 74
Baccalaureate (B.S., B.A., BSW, etc.) 112
Master's (M.A., M.S., MBA, etc.) 111
Doctoral (Ph.D., D.Sc., etc.) 79
Professional (MD, JD) 3
Total 379

Certificates 167
Minors 69
Total 236

UNIVERSITY OF CINCINNATI LIBRARIES
13 Library locations
• Holdings: 4.5 million volumes; 1.5 million e-books.
• Ranked 80th among the Association of Research Libraries Investment Index
• Use: 1.3 million annual visitors; 126,000 annual items circulated; 59,000 annual reference transactions.

STUDENT/FACULTY RATIO
17/1

The University of Cincinnati attracts students from all 50 of the United States, and from 114 countries outside the U.S.

Full Time Students 31,866
Undergraduate 26,464
Graduate & Professional 5,402
Part-Time Students 12,472
Undergraduate 7,097
Graduate & Professional 5,375
Student Diversity
African American 3,728 8.4%
Asian 1,631 3.7%
Hispanic 1,439 3.2%
Ohio Residents 34,803 76.7%
Male/Female 20,630/23,708 47%/53%
On-Campus Residents 5,238
Average age 23.9

TUITION & FEES (2016-17)
Ohio Resident, undergraduate, per year $11,000
Out of State, undergraduate, per year $26,334
Ohio Resident, graduate, per year $14,468
Out of State, graduate, per year $26,210
Room & Board, per year $10,750-$13,050, depending on room type
PERSONNEL DATA (September 2016)
(includes affiliates and volunteers)
Faculty Full Time 2,832
Faculty Part Time 3,823
Staff Full Time 3,495
Staff Part Time 626
Total (Without students) 10,776
Student Workers and Graduate Assistants 6,778
Grand Total 17,554

ANNUAL PAYROLL
Calendar Year 2015 $578,589,976.36

ANNUAL BUDGET (2016-2017)
General Funds $653.5 million
Restricted Funds $337.8 million
Designated Funds $125.1 million
Auxiliaries $137.1 million
Total $1.25 billion

ENDOWMENT (2016)
$1.152 billion

ANNUAL GIVING (FY16)
$258 million

EXTERNAL GRANTS & CONTRACTS (FY14)
$390 million (including affiliates)

ECONOMIC IMPACT (2006)
According to “The Future Starts Here: The Role of Research Universities in Ohio's Economy,” (Appleseed, 2006) the University of Cincinnati is estimated to have an annual impact of $1.52 Billion on the economy of the State of Ohio, thereby generating $11.71 for every dollar invested by the State of Ohio.

ECONOMIC IMPACT: Medical Center & Affiliates (2003)
The UC Medical Center, based on 2002 data, calculates an economic impact of $3.59 billion, and projects an economic impact by 2006 of $4.19 billion. The Medical Center’s $3.59 billion impact on the Tri-State comprises $1.56 billion direct impact and $2.03 billion indirect impact. The Medical Center provides 16,268 full-time equivalent jobs in the Tri-State (up from 14,746 in 1999), making the Medical Center the largest employer in Greater Cincinnati. The “ripple effect” of that direct employment generates a total of nearly 42,000 jobs in Ohio and more than 50,000 jobs in the Tri-State that are directly or indirectly related to the operations of the Medical Center.

NEW BUILDINGS, GREEN SPACES AND MAJOR RENOVATIONS SINCE 1992
Vera Clement Edwards Center, Engineering Research Center, Library Plaza, Aronoff Center for Design and Art, French Hall addition, Cardiovascular Research Center, Sigma Sigma Commons, College-Conservatory of Music, Albert H. Vontz Center for Molecular Studies, University Hall, Kingsgate Conference Center, Hastings and William French Building renovation, Science and Allied Health Building, Eden Avenue Garage addition, Campus Green, University Commons, Clermont College Educational Services Building, Clermont College Student Services Building, Center Hill Campus (Large Scale Test Facility, Combustion Research Lab, Leather Industries Research Building, Erosion Test Facility), Clermont College Facilities Management Building, Braustein Hall renovation, Schneider Residence Hall, Turner Residence Hall, University Pavilion, Central Utility Plant, University Pavilion, Tangeman University Center expansion and renovation, College of Applied Science Classroom Building, Steger Student Life Center, Mews Garden, MainStreet open space, Schott Stadium, Gettler Stadium, Calhoun Street Garage, Clermont College Activities Center, Campus Recreation Center, Raymond Walters College Veterinary Technology Building, Van Wormer Library renovation, Varsity Village Garage, MRI Center, Trabert-Talbert Tennis Center, Lindner Center, Clermont College West Woods Academic Center, Eden Quad greenspace, CARE/Crawley, Morgens Hall, Nippert Stadium; Scioto Hall and Teachers College/Dyer Hall.

Ongoing/upcoming projects: Medical Sciences Building expansion and renovation, Radiation Safety Building, Health Professionals Building, Wherry Hall; Carl H. Lindner College of Business and College of Law.

More details at: uc.edu/content/dam/uc/about/docs/UC Construction Projects_web.pdf
RANKINGS BY EXTERNAL SOURCES

Academic Ranking of World Universities (2015)
The influential Academic Ranking of World Universities, published by Shanghai Jiaotong University, ranks the University of Cincinnati among the top 300 of more than 1,200 ranked worldwide and the top 102 of U.S. universities.

In recent rankings, Bloomberg Businessweek placed UC's MBA program at No. 63 nationally. The University of Cincinnati's undergraduate business program was ranked at 84th among all schools and 41st among public business schools.

Business Insider (2013)
Business Insider surveyed art directors, product designers and others who obtained a design education and placed UC's College of Design, Architecture, Art, and Planning number 3 on a list of design schools best suited to landing a job. In fact, UC is the top-ranked public university on this prestigious list.

DesignIntelligence (2016)
For the 17th straight year, UC was ranked among the best design and architecture programs in the nation. UC's undergraduate industrial design program was ranked No. 2 in the country, while the undergraduate interior design program was ranked No. 4. UC's graduate design program was ranked No. 4 nationally, while the graduate architecture program was ranked No. 17.

Higher Education Excellence in Diversity Award (2016)
The University of Cincinnati was among the recipients in September 2016 of the Higher Education Excellence in Diversity award from INSIGHT INTO DIVERSITY magazine, the oldest and largest diversity-focused publication in higher education.

International Student Barometer (2016)
The International Student Barometer, an annual survey of more than 142,000 international students attending hundreds of global institutions, gives UC high marks. In the latest International Student Barometer (ISB), ranks in the top five worldwide as the most welcoming and also in personal banking services and sports facilities. UC ranked well in university orientation, social facilities and social activities. UC placed 9th overall among national peers.

The Leiden Ranking (2015)
The Centre for Science and Technology Studies (CWTS), Leiden University, has developed a new ranking system entirely based on its own bibliometric indicators. This web-publication is the first in a series of rankings. The work focuses on all universities worldwide with more than 700 Web of Science indexed publications per year. UC ranks 191st in the world in the number of publications, 81st in the United States.

London (UK) Times Higher Education Supplement (2016)
The Times Higher Education supplement, emphasizing research universities, ranks the University of Cincinnati 201-250th among the world’s 980 top universities from 79 countries. The schools listed in the 2016-17 edition of the World University Rankings represent 5 percent of higher education institutions. The publication uses 13 performance indicators to compare institutions. The measures include a reputational survey, international student numbers, and ways to gauge research levels, such as the number of faculty citations in academic journals.

NACUBO Endowment Ranking (2016)
UC's 2016 endowment of $1.152 billion ranks 74th among colleges and universities in the United States and Canada.

The 2015 rankings of the nation's top master's degree programs in urban planning were recently released, and the University of Cincinnati's graduate planning program was ranked No. 17th in the nation and No. 4 in the Midwest region.

Princeton Review: Best 381 Colleges (2016)
University of Cincinnati is ranked by the Princeton Review among the top schools in the United States.

University of Cincinnati College of Business is ranked among the top schools in the country; top 15 percent of all four-year business schools in the nation.

The Princeton Review today named the University of Cincinnati among the nation’s best “green” schools – leading in environmental practices and in preparing the next generation of green professionals.

Research: National Science Foundation (2013)
The National Science Foundation, based on Federally Financed Research & Development Expenditures ranks UC as 46th in the U.S. and 30th among public universities.

Research: Carnegie Foundation for the Advancement of Teaching (2013)
The university is also classified as a “Very High Research Activity” university by the Carnegie Foundation for the Advancement of Teaching, placing the university among 108 research-intensive universities (73 of these are public institutions) to receive the classification.
SCImago Research Group (2011-2012)
The SCImago Research Group’s Institutions Rankings World Report 2010 ranks the University of Cincinnati 203th in the world out of 3,290 institutions. UC is ranked 70th among 581 North American institutions in this report that combines four global indicators revealing performance, institutions’ ability to generate scientific knowledge and to achieve international visibility.

U.S. News & World Report Rankings
(2016 or most recent previous ranking)
The University of Cincinnati is ranked 135th among the top tier of U.S. universities, and 64th among top public institutions as well as 90th among best colleges for veterans.

Among the nation’s elite for co-op and internships: UC’s overall emphasis on experiential learning earned the university its spot on the short list of the nation’s best 22 schools for co-ops and internships. UC students earn a collective $63 million annually, working in about 6,000 co-op placements for about 1,800 local, regional, national and international employers, including Apple, Boeing, Disney, Duke Energy, Fisher Price, General Electric, HBO, Kroger, NASA, Nike, Toyota and many more.

Rankings of specific colleges and programs
- Nursing (Graduate) 28th in the U.S.
- Pharmacy 33rd in the U.S.
- Medicine 40th in the U.S.
- Law 60th in the U.S.
- Business: Full-time MBA 63rd in the U.S.
- Business: Part-time MBA 82 in the U.S.
- Education (Graduate) 76th in the U.S.
- Engineering (Graduate) 82st in the U.S.
- Engineering (Undergraduate) 84th in the U.S.
- Education (Graduate) 93rd in the U.S.

Music and Arts Programs
- Opera/Voice 3rd in the U.S.
- Musical Conducting 5th in the U.S.
- Music 6th in the U.S.
- Industrial Design 6th in the U.S.
- Music Composition 9th in the U.S.
- Orchestra/Symphony 9th in the U.S.
- Drama 37th in the U.S.
- Creative Writing 46th in the U.S.
- Master of Fine Arts 55th in the U.S.

Science and Engineering Programs
- Paleontology 6th in the U.S.
- Environmental Engineering 20th in the U.S.
- Aerospace Engineering 31st in the U.S.
- Civil Engineering 48th in the U.S.
- Mechanical Engineering 60th in the U.S.

Medical and Human Service Programs
- Criminal Justice (Graduate) 3rd in the U.S.
- Pediatrics 3rd in the U.S.
- Audiology 26th in the U.S.
- Speech and Language Pathology 39th in the U.S.
- Otolaryngology 43rd in the U.S.
- Physical Therapy (Graduate) 64th in the U.S.
- Primary Care 78th in the U.S.

More rankings: magazine.uc.edu/editors_picks/rankings
Existing Condition Information

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Date</th>
<th>Format/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerial Photograph</td>
<td>2017</td>
<td>Original image</td>
</tr>
<tr>
<td>2</td>
<td>Baseline Drawing of Buildings, Open Spaces, Roads, Drives, & Walkways</td>
<td>2016 & 2017</td>
<td>CAD, Illustrator, & PDF</td>
</tr>
<tr>
<td>3</td>
<td>Land & Building Uses: i.e. Academic, Research, Student/Faculty Services, Athletics & Recreation, Meetings & Events, Housing On & Off-Campus, Food Service, Parking</td>
<td>2016</td>
<td>Illustrator & PDF</td>
</tr>
<tr>
<td>5</td>
<td>Current Preliminary Capital Plan Initiatives – Immediate and Long-Term.</td>
<td>2015-present</td>
<td>List of project priorities. General project descriptions</td>
</tr>
<tr>
<td>6</td>
<td>Current Campus Move Migration Initiatives</td>
<td>2015-present</td>
<td>PDF illustrations. List of initiatives</td>
</tr>
<tr>
<td>8</td>
<td>Space Utilization Rates & Patterns (Classrooms, Research, Offices, Housing, Food, Parking)</td>
<td>2014-present</td>
<td>Reports and data from previous studies</td>
</tr>
<tr>
<td>9</td>
<td>Current Campus Sustainability Initiatives</td>
<td>2017</td>
<td>Website & written statements</td>
</tr>
<tr>
<td>10</td>
<td>Topography, Greenscape, Hardscape, Softscape & Stormwater Management by Campus Zone</td>
<td>2014-present</td>
<td>CAD-format digital orthographic projections, and partial surveys. Assessments of the current landscape sectors by zone. Stormwater master plan, completed.</td>
</tr>
<tr>
<td>13</td>
<td>Campus Mobility Plans: Walking; Bicycles; Shuttles, Area Transit, & Rental Vehicles; Building Access, Service Vehicles; Parking; & Neighborhood Streets, Major Urban Corridors, State Routes & Interstate Highways.</td>
<td>Various</td>
<td>UC Transportation website. CAD and Illustrator maps. Campus Parking studies I-71 Corridor Studies. Staff interviews</td>
</tr>
<tr>
<td>14</td>
<td>Campus Identity: Gateways, Directional Signage, Building Exterior Signage</td>
<td></td>
<td>Current signage standards. Staff interviews</td>
</tr>
<tr>
<td>15</td>
<td>Neighborhood Development Conditions & Trends</td>
<td></td>
<td>Reports. Staff interviews</td>
</tr>
</tbody>
</table>
Existing Studies or Information to be Incorporated into the Final Plan

Unless where specifically noted, most studies are available in PDF format.

<table>
<thead>
<tr>
<th>Study or Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Plan 2000, and Draft 2004 Updates</td>
<td></td>
</tr>
<tr>
<td>Campus Heritage Plan, 2008</td>
<td></td>
</tr>
<tr>
<td>Calhoun Corridor Study</td>
<td>Southern campus edge</td>
</tr>
<tr>
<td>Preliminary Capital Improvements (maps, lists, descriptions)</td>
<td></td>
</tr>
<tr>
<td>Crosley Tower Replacement Study</td>
<td>Northern campus edge, In-Progress</td>
</tr>
<tr>
<td>East Campus Master Plan</td>
<td></td>
</tr>
<tr>
<td>Electronic Signage Master Plan</td>
<td></td>
</tr>
<tr>
<td>Energy / Climate / STARS Report</td>
<td></td>
</tr>
<tr>
<td>Food Service Master Plan</td>
<td></td>
</tr>
<tr>
<td>I-71 MLK Corridor Study</td>
<td></td>
</tr>
<tr>
<td>Jefferson Corridor Study</td>
<td></td>
</tr>
<tr>
<td>Landscape Sector Assessment Plans</td>
<td></td>
</tr>
<tr>
<td>Libraries Master Plan</td>
<td>In-Progress</td>
</tr>
<tr>
<td>Parking Studies, East & West</td>
<td></td>
</tr>
<tr>
<td>Recycling & Waste Programs</td>
<td></td>
</tr>
<tr>
<td>Snow Management Plan</td>
<td></td>
</tr>
<tr>
<td>Storm Water Master Plan</td>
<td></td>
</tr>
<tr>
<td>Student Housing Master Plan</td>
<td></td>
</tr>
<tr>
<td>Transportation Plans, including transportation hub north of College of Business</td>
<td></td>
</tr>
<tr>
<td>UCIT Master Plan (Huron Study only)</td>
<td></td>
</tr>
<tr>
<td>University Impact Area Study</td>
<td></td>
</tr>
<tr>
<td>Utilization Studies</td>
<td></td>
</tr>
</tbody>
</table>
University of Cincinnati

Campus Heritage Plan

University of Cincinnati
Division of Administration and Finance
Planning + Design + Construction

John Milner Associates, Inc.
Historic Preservation and Cultural Resource Services
The University of Cincinnati’s assembly of buildings and landscapes has much to teach the higher education community. The collection of opinions regarding the campus’ appearance is as diverse as the campus community itself. An interested observer can find an integration of old and new structures and landscapes on this campus. The new structures and landscapes have received national, and occasionally international, attention from the press and the architectural community and have taken on “signature” status. The existing structures and landscapes have been integrated with the new but like the new are not documented in a preservation plan.

The University needed a plan to document the physical history of the campus, including both old and the new to serve as a guide for future development. In 2006, The University of Cincinnati pursued a Campus Heritage grant from the Getty Foundation in order to prepare a preservation plan for the reinvented campus. The plan addresses preservation and/or change in the buildings and landscapes and processes for addressing the rehabilitation, reconstruction, restoration or demolition of the buildings and open spaces on campus current and future generations might use to make thoughtful decisions about the campus. The University of Cincinnati is grateful for the opportunity to prepare such a plan due to the generosity of the Getty Foundation. Together with our consultants we now have such a plan for the future.
Chapter 5 **Landscape Assessment and Treatment (continued)**

Principles to Consider in the Development of Treatment Recommendations 5-13
Principles of the Master Plan 5-13
Principles of the University’s Sustainability Landscape Overlay 5-13
Meeting the Needs of the Community 5-16
Treatment Recommendations 5-17
General Treatment Issues and Recommendations 5-18
Treatment Issues and Recommendations by Character Area 5-22
Summary 5-59

Chapter 6 **Architectural Assessment and Treatment Recommendations**

Introduction 6-1
Overview of Campus Architecture 6-2
Description, Assessment, and Recommendations for Signature Buildings 6-7
Description, Assessment, and Recommendations for Historically Significant Buildings 6-21
Maintenance Recommendations and Guidelines 6-38
Guidelines for Demolition, Additions, and New Construction 6-40

Chapter 7 **Administrative, Management, and Policy Recommendations**

Introduction 7-1
Management and Policy Recommendations 7-2
Implementation Strategy 7-5

Appendix A **Cincinnati’s Contemporary Buildings and Landscapes**

Preserving the Future of the University of Cincinnati Campus A-1
The Hargreaves Plan and Spaces A-7
Conclusions A-13

Appendix B **Buildings: Character-Defining Features and Conditions Assessment**

Alms Building—Zimmer Hall B-1

Appendix C **Landscapes: Character-Defining Features and Conditions Assessment**

Baldwin Quadrangle (Schneider)—Zimmer Roof Garden C-1
Chapter 1

Introduction

Project Background and Purpose

It can be said that history, like beauty, lies in the eye of the beholder, as preservation decisions reflect the values of the preservationist as much as the merits of that which is preserved... Historic preservation is a process that involves an imaginative transformation as much as a conservation of material culture.¹

We require reminders of our heritage in our memory, our literature, and our landscapes. But advocates of preservation who abjure us to save unaltered as much as we can fight a losing battle, for even to appreciate the past is to transform it. Every trace of the past is a testament not only to its initiators but to its inheritors, not only to the spirit of the past, but to the perspectives of the present. ²
The University of Cincinnati Campus Heritage Plan has been prepared in the penultimate year of the Getty Foundation’s program of providing seed money for colleges and universities across America to study their historic built resources. “Historic” may be defined in the traditional sense as resources having achieved at least fifty years of age and having contributed to American historical events, people, or design characteristics. Preparation of a campus heritage plan for a predominantly contemporary campus such as this may appear at first glance to be premature at best.

What then should be the focus of the Campus Heritage Plan, with its emphasis on the contemporary work of signature designers—architects and landscape architects—who have only recently contributed to the extensive transformation of the university campus? What would be of the greatest value to the university?

For instance, how should the plan address the landscapes recently completed? These landscapes are architectural in nature with their mounds and angled edges rather than pastoral in nature. Are the expressions of design of enduring quality to serve the campus community or will they require renovation and redesign to address changing needs and more human engagement?

Questions like these are the basis for the discussion and recommendations of the University of Cincinnati Campus Heritage Plan.
Historic Preservation at University of Cincinnati

The University of Cincinnati retains a few buildings, some landscape features and organizational elements from all of the campus’ evolutionary periods of development. In general, the university’s remaining historic (predating 1948) resources have been well maintained and respectfully treated. Two structures shown on the current master plan as demolished structures may want to be re-considered for an appropriate use.

Over the 20th century, program expansion in response to changing national trends, acquisition of institutions merging into UC with their own independently conceived facilities, and enrollment “booms” from the 1940s through the 1970s were addressed by adding mostly utilitarian academic and residence halls to an increasingly commuter-centered campus. The campus has undergone such radical change since the early 1960s that the older, historic campus and portions of the surrounding neighborhoods are barely recognizable. Buildings from this modern period (before 1991) are not always considered significant for the present, although some may be valued as local landmarks, and could be inadvertently lost.

The campaigns of new construction over the past twenty-eight years—culminating in the implementation of the Hargreaves master plan—have measurably transformed the campus. Rather than relying upon ivy-covered walls, historic buildings and pictorial landscapes, the image of the university relies instead upon the dynamic contemporary artistic character of its signature buildings and landscapes and its pedestrian-centered campus, most notably visible on the university’s MainStreet. The Campus Heritage Plan recognizes these masterworks to be of potential historic significance and recommends that great care be taken in how changes to these buildings and landscapes are undertaken.
How the Plan Is Organized

Recognizing this evolving understanding and appreciation of UC’s historic resources, the University of Cincinnati Campus Heritage Plan is organized to accomplish the following objectives:

- **Foster a new appreciation for campus resources by placing them within a broader context of college planning and design.**

 Chapters 2 and 3 provide an overview of the historical background and context for understanding the history and significance of the buildings and landscapes. The chapters discuss the development of the University of Cincinnati’s campus through various periods significant to its history and outlines relationships between the university’s development and the history of campus planning in America. Through these relationships, the national significance of the campus and many of its buildings and landscapes can be established.

- **Identify what aspects of the campus design may be recognized as significant to the university’s or our nation’s heritage now or in the future when the signature designs have reached fifty years of age.**

 The Getty Campus Heritage Grant application identified specific buildings and landscapes as the focus of the plan (figures 1.1 and 1.2). Architectural critic Michael Sorkin was invited by the university architect to assess the “essence” of the Hargreaves master plan and the signature projects it spawned. In a public
lecture delivered on campus at the College of Design, Architecture, Art, and Planning in April 2007 (Appendix A, Preserving the Future of the University of Cincinnati Campus), Sorkin described the significance of the signature buildings and landscapes in order to “initiate a dialogue about the nature and practicality of continuity and change.”

- **Identify likely threats to the resources, particularly impetuses for change when resources are either not performing successfully, are difficult to maintain, or fall out of favor through normal cycles of taste and style.**

Understanding that the campus and its buildings and landscapes cannot be frozen in time, the preservation approach described in Chapter 4 goes on to describe the underlying principles for accommodating change where buildings and landscapes are considered significant and worthy of a preservation ethic. Chapters 5 and 6 outline the significance, condition, and recommended treatment of individual buildings and landscapes in the context of pivotal management issues identified in the course of preparing the plan. These chapters are supported by the description of character-defining features for each building or landscape that are included in the plan’s appendices.

- **Establish a set of treatment and management guidelines that help protect the most significant values and principles of the design as time takes its toll on materials.**
How to Use The Campus Heritage Plan

The goal of the University of Cincinnati Campus Heritage Plan is to address the process of change and provide guidelines for its implementation. It should be viewed as a roadmap for a case-by-case process of accommodating needed change while preserving the character and integrity of both “mature” and “signature” buildings and landscapes at the university using the tools that have been developed and refined in the field of historic preservation over the past forty years. Specific outcomes are not prescribed; rather, the plan serves as a resource for:

- Understanding the history and significance of buildings and landscapes
- Identifying character-defining features that are significant to the designs of buildings and landscapes
- Determining appropriate levels of treatment and degrees of change to which buildings and landscapes, or portions of them, can be subjected without losing character-defining attributes
- Using appropriate guidelines to evaluate proposed changes
Chapter 1

The Campus Heritage Plan and the Future

Universities are among the most dynamic of institutions in their need to change over time. To survive and stay relevant, universities necessarily respond to a variety of program and market-driven influences. The University of Cincinnati is no exception. Changes at UC are complicated by the restraints of an urban campus with few remaining land banks for future buildings and landscapes. The campus is densely developed and will continue to evolve to use space to its highest utilization. Pressure to stay on the cutting edges of education and research and in "market" perceptions that will attract the best faculty, staff and students will lower tolerances for substandard or dated facilities. All university buildings must be designed with the knowledge that change is inevitable. Historic and signature buildings and landscapes will need to be able to adapt to new programmatic and environmental needs over time.

UC’s image or identity shaped by the physical character and appearance of the campus plays a critical role in impressing parents, attracting students, and, perhaps most importantly, maintaining, inspiring, and activating alumni boosters and donors. Universities that change too fast and too radically do so at the peril of alienating alumni constituents who may no longer identify with the changed institution. Most universities to carefully preserve their older campus buildings and landscapes while adding new facilities as infill and around the edges, as a strategy for maintaining and enhancing their images. Just the opposite has been true at UC. It is the new buildings and landscapes that have brought it so much critical acclaim and public recognition of the “brand or identity”.

Chapter 1 - 7
To some degree, then, the Campus Heritage Plan is an ongoing discussion about the role of Planning + Design + Construction on behalf of the Board of Trustees in shaping the environment that survives into the future. Given the university’s enormous investment in the built environment and the desire to make the campus an inspiring and educational experience in itself, the underlying premise of this plan is to support conservation and protection of all features with inherent value to the university community. When change is required, the plan will suggest processes and procedures for testing this change in order to avoid construction or demolition where the loss of such a building or landscape would be regrettable.
Endnotes

1. Charles A. Birnbaum and Mary V. Hughes, eds., Design with Culture; Claiming America’s Landscape Heritage (Charlottesville, VA: University of Virginia Press, 2005), 1-2.

Photography

All photography for Chapter 1 was supplied courtesy of the following entities:
- John Milner and Associates
- J. Miles Wolf Architectural Photography
- Public Library of Cincinnati and Hamilton County
- University of Cincinnati: Academic Health Center Photo Services
- Administration and Finance, Planning + Design + Construction
- University Libraries
- Archives & Rare Books Library
- University Photo Services
Figure 1.1

Note: The Cincinnati Observatory, "a mature building", is not shown on this map.
Cincinnati in the late 18th century was a thriving trading center, strategically located on the northern banks of the Ohio River. Surviving on the fringe of western settlement, its inhabitants needed protection. A garrison, Fort Washington, was built to provide security from the warring Indians of the Ohio Valley. By 1792, nearly 1,000 residents had settled in the central river basin of land surrounded by steep topography on the north, west, and east. Commerce flourished, with mills, tanyards, and foundries. In 1802, the City of Cincinnati was incorporated.

Cincinnati residents, realizing the need for an institution of higher learning in their new city, created a school association in 1806 and planned to open a college financed through a lottery system. Despite the construction of the first university building and the formation of the Cincinnati University, the economic depression of 1807 and a tornado in 1809 hindered further development of the college.¹
The Cincinnati Lancaster Seminary was formed with a state grant in 1815 and housed in a building at Fourth and Walnut streets. The school thrived for a few years but did not fulfill the city’s needs for a university.

The idea of the university found its next champion in Dr. Daniel Drake, scientist and physician, who succeeded in gaining charters from the State of Ohio for the Cincinnati College and the Medical College of Ohio in January 1819. That fall, classes began for what is now the University of Cincinnati, the second oldest municipal university in the nation. (First was the University of Charleston, founded in 1770.)

Although both Cincinnati College and the Medical College of Ohio had rough beginnings and unfortunate failings, their original charters would later be used to establish the academic departments of today’s university.

Cincinnati College was housed in the Lancaster Seminary building on Fourth and Walnut Streets; its first president, the Reverend Elijah Slack, also taught classes in mathematics, philosophy, and chemistry. After four commencements, the college experienced a fire and declining admission due to competition from nearby Miami University. Classes were suspended for a time.

The Cincinnati Law School was established in 1833 and became a department of Cincinnati College one year later. In 1835, Dr. Drake established a Medical Department under the charter of Cincinnati College. In 1836, the Reverend William Holmes McGuffey was appointed the new president of the College and subsequently revived the Academic Department (also termed the College of Liberal Arts).
During this era, higher education opportunities began to be offered elsewhere in the city at the Ohio Mechanics Institute, founded in 1828 (housed in the former Bazaar department store and literary salon); the Cincinnati Observatory in Mt. Adams, founded in 1842; the Cincinnati College of Pharmacy, founded in 1850; the Conservatory of Music, founded in 1867; and at the College of Music, founded in 1878.\(^5\)

All of these schools would eventually coalesce as the modern University of Cincinnati. A common location and funding were needed to unify the institution. These needs appeared to be fulfilled by the bequest of Charles McMicken (1782-1858), a wealthy businessman, who had cherished a dream of endowing a university.

McMicken bequeathed $1 million to the City of Cincinnati upon his death but the endowment was diminished by the poor economic conditions caused by the Civil War, leaving the university in an untenable position by the late 1860s. The City of Cincinnati’s decision to intervene, entwined the future of the university and the city for the next 100 years. After consolidating funds from the Cincinnati Board of Education and the McMicken endowment, the city chartered the University of Cincinnati, in 1870. Classes were initially held in the Woodward High School building on Twelfth Street, and in 1875, they moved to the McMicken estate on Clifton and Vine Streets.\(^6\)

For 20 years the university occupied the McMicken estate, a narrow strip of land on a steep hillside that offered no room for expansion and abutted industrial environment that was not conducive to higher education. After Jacob Donelson Cox was inaugurated as university president in 1885, he immediately initiated changes in the institution that led to the incorporation of several existing small colleges into one school.\(^7\) Cox oversaw the assimilation of colleges specializing in medicine, pharmacy, and dentistry. Cox forged an urban university that would give back to the
community in service, production, and leadership. To accommodate the new collection of colleges, President Cox negotiated with the City of Cincinnati in 1889 to move the university from the McMicken estate, to a more bucolic setting on 43 acres at the southern end of Burnet Woods Park.
The new site was well situated geographically between the city and the surrounding suburbs on high ground with an unimpeded outlook on the west toward the hills above the Mill Creek Valley. Northward stretched the remaining undulating woodland acres of the city park.

Having escaped the congestion of the city, the fledgling university built a campus. In 1894, six architects submitted plans for the proposed site, which would consist of three related buildings to be made of stone or brick with stone trim. In 1895, Samuel Hannaford won a competition with five other architects for the first college building — McMicken Hall and the subsequent additions of Hanna and Cunningham halls, connected to either side. Hannaford’s campus plan placed the buildings along a ridge within the park above the McMicken estate facing Clifton Avenue and the streetcar line. The classical aesthetic referenced in the new buildings suggested the university’s desire to be considered simultaneously worldly and inherently American. The linear plan was functional but unusual among college campuses of the time being laid out in quadrangles centered...
on common green courtyards. Commuting students arriving by streetcar along Clifton Avenue defined the university’s identity as a municipal commuter school which would set the pattern for further campus development.

In this new park setting, athletics became highly popular and competitive during the 1880s and 1890s. A lowland area behind the "academic ridge" became the logical site for constructing a stadium. Taking advantage of the bowl-like terrain, rows of concrete bleachers were built, then an entire stadium. As the university continued to grow, the stadium was positioned to be at the heart of the west campus.
In 1899, Howard Ayers became president of the university. By the end of his tenure in 1904, the university had grown. Van Wormer Library, designed by Samuel Hannaford, was built with a gift of street railroad stock from Asa Van Wormer in memory of his wife. The gift was made in 1899, and the library officially opened in 1901. The College of Engineering was established in 1900. Summer and evening classes offered, added academic opportunities to students.

By 1904, the university’s growth had prompted President Ayers to hire noteworthy campus planners and architects McKim, Mead and White to propose a new campus plan. The University of Cincinnati plan they presented strongly adhered to Beaux Arts traditions, with symmetry of form and strong axial alignments composed of hierarchical spaces surrounding a central quadrangle. The plan did not reflect the rolling topography of the park setting and barely acknowledged the existing buildings on the ridge above Clifton Avenue (possibly referenced in the grouping of structures at the right side of the rendering). Although never realized, the plan beautifully embodied the ambitions of the University of Cincinnati and laid the groundwork for the plan of the Engineering Quadrangle to follow.

Charles W. Dabney followed President Ayers in 1904. During his tenure (1904–1920), the colleges of Education, Commerce, Home Economics, and Graduate Studies were created. Dabney strengthened the university’s connection with the city and elicited the support of Cincinnati citizens setting the stage for more creative approaches to education.
In 1906, Dean Herman Schneider of the College of Engineering introduced the revolutionary concept of cooperative education to a class of 27 students. The “co-op” program allowed students to alternate classes at the university with quarters of paid employment. The program became synonymous with the University of Cincinnati and contributed to its international reputation as a leading institution. By 1907, the number of students applying to the program increased to 800. Naturally, this increased enrollment created a need for more facilities.

In 1910, a power-generation plant was built to supply coal-powered heat and electricity to the campus buildings on the ridge. Following the strong axis of the power plant and Carson Field, Schmidlapp Hall (later named Dieterle Vocal Arts Center) was built in 1910. The axis along the lowland area created the alignment for the field, the first rise of concrete seating surrounding the field, the new power plant, and, later, Memorial Hall (1924).

The architects of the power plant, Teitig & Lee and Garber & Woodward, were also responsible for Baldwin Hall, the new home for the College of Engineering, which followed in 1911. Breaking with the tradition of siting buildings in a linear manner along the ridgeline to develop the campus along a subsidiary axis determined by the hilly terrain, the new Engineering Quad may have drawn some inspiration from McKim, Mead, and White’s plan. In the following years, two complementary buildings, Old Chemistry and Swift Hall, would flank Baldwin Hall to the south and north, creating the traditional green space presently known as Herman Schneider Quadrangle.
Also in 1911, the Samuel Hannaford & Sons-designed College of Medicine, was built in the Avondale neighborhood together with a new General Hospital, forming the core of what today is known as the East Campus. The massive new complex comprised 24 buildings, including a power plant, an administration building, a pathological institute, a school of nursing and health building, a surgical building, a medical reference library, a medical college building, and dormitories.

In 1920, economics professor Frederick Hicks became interim president. By the time he retired in 1928, increased enrollment, prompted construction of a number of additional buildings. These included Beecher Hall (1916), Nippert Stadium (1916), Old Chemistry (1917), Swift Hall (1925), Memorial Dormitory (1924), Taft Hall (1925), and Tanner’s Laboratory (1924). Aerial views of the campus from 1910 to 1920 show the progression of buildings as initially developed in a linear pattern along the ridge being shifted by the terrain.

Dean Herman Schneider was named university president in 1928, in part because the co-op program he created had succeeded so brilliantly. Schneider held the presidency until his retirement in 1932. His devotion to teaching and a dedication to producing cultured, practical, and service-minded graduates characterized Schneider’s presidency. The co-op program had inaugurated a method of connecting theory with practice that has since influenced various departments, and helped to form important relationships between students and the community “in music through performance, in classics through archeology, in the arts through design and in the life sciences through medicine.”
Schneider also envisioned establishing a series of academic and residence hall quadrangles on campus, each encompassing a separate college although the plan never materialized as he had hoped. One of Schneider's notable gestures was to supplant Van Wormer Library (1899) with a new larger Main Library designed by Hake and Kuck in 1930 (now called Carl Blegen Library), to accommodate the burgeoning collection. The Art Deco style of the building included decorative reliefs that celebrated the history of the printed word, featuring notable printers through the ages as well as printers' marks. The symbolism drew attention to those who spread the written word to a wider public audience.¹⁸
In 1930 a new Teachers College, designed by Garber & Woodward, was built along the academic ridge. To the east, a natural sciences building, Dyer Hall, also designed by Garber & Woodward, was built in 1931. These two buildings would be connected in 1958, creating a green space traditionally used as a quadrangle. Schneider's tenure also saw the construction in 1930 of the University branch YMCA, designed by Zettel and Rapp.

Raymond Walters was inaugurated as president upon Schneider’s retirement. Walters’ 23-year presidency, although clouded by the difficulties of the Great Depression, provided stable governance and sustained the university to commitment to community service, research, and medical discoveries. During Walters’ tenure, UC received worldwide recognition for Carl Blegen’s archeological excavations and George Rieveschel’s formulation of the antihistamine Benadryl.

With enrollment declining as the Depression grew, Walters was forced to implement pay cuts and dismissals. Faculty and staff found additional income through Franklin D. Roosevelt’s New Deal programs. The Works Progress Administration (WPA) provided funding for the construction of the Student Union building (Tangeman University Center).

After World War II, the G.I. Bill brought new students — veterans — to the campus in numbers so great that the university hastily built new housing facilities and classrooms to accommodate them. Temporary housing and classroom facilities in the area adjacent to McMicken Hall were so conspicuous that they were collectively dubbed “Vetsville”. By 1949, two-thirds of the students graduating were veterans.19
Top photo: Military exercise within McMicken Circle during World War II.

Bottom photo: "Vetsville," temporary housing and classrooms, adjacent to McMicken Hall.
Chapter 2

The university's enrollment continued to grow, reaching a total of 13,783 students in 1950. Of these, about 7,000 attended evening programs. This growth placed a great deal of pressure on the physical campus as the student population outgrew the site. During the mid-1940s, the university made several unsuccessful attempts to acquire an additional 22 acres of land for the campus within Burnet Woods Park. In 1952, City Council approved expansion of the campus to the north of University Avenue (now Clifton Court). In that same year, Alms Memorial Hall, home at that time to the College of Applied Arts (later to become the College of Design, Architecture, Art, and Planning [DAAP]), was dedicated on a hilltop in Burnet Woods. The topography of the Corryville neighborhood on the east side of the campus behind Nippert Stadium was considerably altered by the construction of French Hall dormitory and James C. Allen's 8,000-seat Armory Fieldhouse (completed in 1954), and the nature of construction at the university took a new direction. Buildings were no longer grouped around open space; rather, open space became the leftover edges.

In 1955, Walter C. Langsam became university president, serving until 1971. Langsam’s tenure was characterized by vast changes in both the physical character and the academic and social culture of the university. His stewardship straddled the “street-car college,” Cold War, and Vietnam years. Amid these external social forces, the university felt new growing pains. The university again expanded by adopting several colleges that previously had been independent, while continuing to develop new programs of its own. The College of Pharmacy merged with the university in 1954; the College of Music and the Cincinnati Conservatory of Music were allied in 1962; and the Ohio College of Applied Science (or ‘OCAS,’ previously the Ohio Mechanics Institute) was brought into the fold in 1969.

Post-War Expansion and the Automobile Campus (1950–1984)
OCAS remained at its downtown location but, on campus, the construction of buildings like the CCM complex in former open spaces was dramatically altering the university landscape. The grass lawn amphitheater in the ravine behind the university library, once used for graduation exercises, became the site and form-giver for the fan-shaped Patricia Corbett Theatre.20 As the number of students driving to campus continued to rise, parking lots and high-rise residential buildings surrounded by parking changed the fabric of the Corryville neighborhood and established the outlines of a campus “superblock” which can be seen to be emerging in a campus map from 1962.21

As new growth strained the university’s finances in the mid-1960s, the administration sought a closer alliance with the state to ensure the institution’s survival. In 1967, an agreement was reached that provided an influx of state funds while keeping the university under city ownership, although city funding had dwindled to a trickle. The university was on the road to becoming a full-state institution. Even as public funding lagged behind ever-increasing enrollment buildings continued to be built, introducing new building patterns.22 Beginning in 1964 with the “Three Sisters” (Sawyer [demolished 2005], Scioto, and Morgens Halls) at the eastern edge of the block and continuing with Calhoun Hall along the southern boundary, large-scale high-rise buildings edging open space (in this case, much of it temporary parking) followed a pattern similar to high-density housing in cities being reshaped by Urban Renewal.
When it was built on the east side of the campus superblock in 1971, the 27-story Sander Hall topped the Hughes High School tower as the most visible skyline feature on the hill. Sander was designed to house 1,300 students in 5-bedroom suites, which were meant to foster interaction and small-group community-building. However, the high-rise architecture did not meet later building codes and was considered both unsafe and too costly to upgrade. Sander Hall was imploded in 1991.

Crosley Tower, Rhodes Hall, Rieveschl Hall, and Zimmer Hall—components of the Brodie Science Complex—were built in 1969 and 1970 at the end of President Langsam’s tenure, filling in the north side of the West Campus adjacent to DAAP. Langsam Library, conceived as part of this development, followed 10 years later in 1979.

Throughout the late 60’s and 1970’s, the College of Medicine and the General Hospital continued to grow. The area around General Hospital expanded into the University Medical Center. In 1960 the City of Cincinnati granted the university executive control of the Cincinnati
General Hospital (renamed University of Cincinnati Hospital in 1982). New wings or additions were added to the Pavilions (1916) and Kettering Lab (1930). The College of Pharmacy was established and housed in Wherry Hall (1959), and a new home for the College of Nursing, Procter Hall, was built in 1968.

Student and community engagement continued in the 1960s with an idea envisioned by DAAP students, called “Operation Resurrection.” The students put into motion the recovery of roughly 150 stone pieces from the Cincinnati Chamber of Commerce building (designed by the late architect H. H. Richardson), which had burned down in 1911. The park board donated one-fourth of an acre on the north side of St. Clair Street (Martin Luther King, Jr. Drive) to DAAP for the purpose of siting the monument.

Warren G. Bennis, a noted theorist in the field of organizational design and leadership, was inaugurated as university president in 1971. The presidency changed again in 1977 at a seminal moment in the University of Cincinnati's history, when the university became a full-state institution. Henry R. Winkler, became the first president to have graduated from the university, took the helm. The administration developed a new vision for the university's future, but lacked commensurate funding for new buildings. In 1980, a new facility for the College of Law was constructed around the 1925 Taft Hall, rather than creating an entirely new building. Nippert Stadium, was renovated instead of constructing a new facility. After 13 years in an off-campus facility, the university basketball team received a new home, Shoemaker Center, in 1989.
In 1984, Joseph A. Steger succeeded Dr. Winkler as president. At the outset of his tenure, Steger expressed dissatisfaction with the character of the campus. Steger sought to change the school’s direction and image, and, with support from the administration, he launched a search for a visionary planner. The importance of a master plan to establish a direction for university physical growth and evolution was recognized as paramount. The office of landscape architect George Hargreaves was selected for its recognition of the need to establish a sense of connection throughout the campus, and to create a sense of place, or specific character, that would serve the various needs of the university’s population. Hargreaves presented a vision that looked beyond individual works of architecture to the total environment and imagined a strong interaction between buildings and landscape. His concept was derived from Frederick Law Olmsted’s 19th-century plan for Boston’s parks, the “Emerald Necklace;” in fact, Hargreaves’ plan was dubbed the “string of pearls.”

In 1984, Joseph A. Steger succeeded Dr. Winkler as president. At the outset of his tenure, Steger expressed dissatisfaction with the character of the campus. Steger sought to change the school’s direction and image, and, with support from the administration, he launched a search for a visionary planner. The importance of a master plan to establish a direction for university physical growth and evolution was recognized as paramount. The office of landscape architect George Hargreaves was selected for its recognition of the need to establish a sense of connection throughout the campus, and to create a sense of place, or specific character, that would serve the various needs of the university’s population. Hargreaves presented a vision that looked beyond individual works of architecture to the total environment and imagined a strong interaction between buildings and landscape. His concept was derived from Frederick Law Olmsted’s 19th-century plan for Boston’s parks, the “Emerald Necklace;” in fact, Hargreaves’ plan was dubbed the “string of pearls.”
One problem of the “streetcar” campus was its lack of evening activity once commuters left for the day. The campus would need functional and vibrant places where students could gather and participate in social and scholarly activities, including outdoor restaurants, cafes, and theaters, enveloped by architecture. Hargreaves sought to replace the remained open spaces and parking lots that occupied the center of campus with a series of designed open spaces and activated places. The identification of “force fields” provided a basis for analyzing the conflicting lines of orientation that had developed. Hargreaves’ plan suggested using buildings to infill, but in a way that permitted the creation of open space through courtyards or plazas, as in an urban environment. Hargreaves thought of the buildings as a means to carve and shape space, connecting with the landscape in a sculptural way. His landscape design encompassed molded landforms, sparse plantings, and non-Euclidean walkways. It was intended to function as a unifier between buildings and outdoor spaces, to make visual connections, and to create a sense of place through activities shared across the campus community.
Hargreaves’ master plan began to make an impact beginning with the construction of a broad, fan-shaped lawn, designed in 1993, between McMicken Hall and Tangeman University Center, where Old Commons, Old Tech, Tanners Laboratory, and Beecher Hall had previously stood. This green immediately completed the previously unrealized central portal of McMicken Hall and introduced the concept of walkability into the campus. University Avenue also provided a ceremonial-like space that became a major thoroughfare between buildings.28

Under the leadership of Jayanta (Jay) Chatterjee, new architecture was included in the master plan to accommodate the growth of the DAAP program. Dean Chatterjee’s advocacy for the selection of “signature” architects to design the master plan’s new buildings and spaces would greatly influence the new visual character of the university landscape.
One technical issue of the state-owned university’s obligation to employ local architects was accommodated by first engaging a local “architect of record” who then participated in the selection of a nationally or internationally recognized designer to be part of the project team. Between 1991 and 2000, some of the world’s most renowned architects designed works for the University of Cincinnati, including Peter Eisenman, Michael Graves (a UC DAAP graduate), David Childs, Henry Cobb, Frank Gehry, Rudolfo Machado and Jorge Silvetti. Design firms influential both before and after 2000 were the Cambridge Seven; after 2000, Leers Weinzapfel Associates and Gwathmey Siegel & Associates Architects contributed to design at the University of Cincinnati.

The first of the signature architect-designed buildings was the Edwards Center, built in 1992 from a design prepared by David Childs of Skidmore Owings & Merrill. Although not as dramatic as some of the later signature buildings, the Edwards Center provides one of the most obvious interpretations of the campus master plan and a direct nod to the “force field” organizational system. Named for Vera Clement Edwards, one of the first black women to earn a master’s degree from and teach at UC, the building expresses the two conflicting orientations of the campus.

In 1995, Michael Graves was selected to design the post-modern Engineering Research Center, located at the main approach to campus from the east. A colonnade marks the main entry to the building, and a public passage leads to the rest of campus. A more unusual building, which immediately struck a different note on campus, was the Aronoff Center for Design and Art, a building that provided library, exhibition, and office space as well as classrooms, studios, and lecture halls. The Aronoff Center, designed in 1996 by Peter Eisenman in association with Lorenz and Williams, acts as a link between Wolfson Hall (1976) by Tweedel Wheeler Strickland and Beumer; the Alms Building, (1952) by George Rath and James E. Allen; and the DAA building (1958). The Aronoff Center both confused and astonished UC students and visitors, but it functioned as a catalyst for future change. Its construction began a
trend that suggested architecture was intended to challenge the intellect, work together with the landscape to create a sense of movement through the campus grounds, and provide significant spaces within which activity could occur. Frank Gehry’s Vontz Center for Molecular Studies, constructed in 1999, offered further indications of the new dynamic forms that provided living and work space, and offered alternative ways in which buildings could function together with the landscape.

The addition of further buildings contributed to the creation of groups or complexes that provided new active spaces connecting related activities while acknowledging the campus’s past. The College-Conservatory of Music (CCM), for example, occupies “CCM Village” and consists of several buildings, including Memorial Hall and the Dieterle Vocal Arts Center (formerly Schmidlapp Hall), Mary Emery Hall, and the Corbett Center for the Performing Arts. The Center incorporates several 1970s structures, such as the Patricia Corbett Theatre and Corbett Auditorium, the new Werner Recital Hall, and a studio theater. The theater is set into a hillside and echoes its amphitheater form; a low brick dance studio wing runs around
part of the exterior, forming a system of small courtyard gardens that wrap around the eastern side. The gardens were designed by Laurie Olin, known for his work on Bryant Park in New York City. In 2000, Henry Cobb unified these buildings and gave them a center with a long brick wing, Mary Emery Hall, punctuated along its roofline by distinctive pyramidal luminaries. The complex makes less of a splash than some of the successive signature buildings, but is, in fact, considered a masterpiece of highly sensitive interior and intelligent siting. It plays a central role in the master plan, connecting spaces at the intersection of the CCM Village, the old academic ridge, and the new MainStreet project.31

Green spaces, together with dramatic buildings, provided connections along which the student could walk through the university grounds. Separate but not isolated individual spaces, such as the Library Square designed by Hargreaves in 1995 and Sigma Sigma Commons (1998), give texture and character to the place, enriching the more traditional green represented by the Clifton Avenue and Herman Schneider [formerly Baldwin] Quadrangle.
Signature landscapes, from top: University Commons, Mews, Campus Green, and Zimmer Roof Garden.
Fulfillment of the Cohesive Landscape Vision (2000-present)

In 2000, construction of the University Commons on the East Campus and of Hargreaves Associates’ Campus Green, located on the site of parking lot No. 1, furthered the master plan’s concept of individual and connected spaces situated within a pleasant and walkable landscape. McMicken Commons, which was initially constructed in 1990 as the first open space completed under the master plan, was opened in 2004 after renovation of the Tangeman University Center.

Also in 2004, Moore Ruble Yudell Architects created an open-space corridor called The Mews running between the Steger Student Life Center and Swift, Baldwin, and Rhodes halls. This landscape of terraced spaces draws connections to the campus’s past from architectural fragments of earlier buildings. On the other side of the Steger Center, Hargreaves’ plan for MainStreet suggests the ways in which he envisioned the landscape functioning. Bearcat Plaza was constructed in 2004 as part of MainStreet, and in 2006 Hargreaves completed the Zimmer Roof Garden above Zimmer Hall. After 2000, signature architecture that continued to dramatically change the look of the
Chapter 2

In 2006, Morphosis Architects designed the highly geometric, multi-purpose Campus Recreation Center. The building maximizes its location along the sloping main street, and offers 350,000 square feet for team sports and personal fitness, as well as space for learning, dining, and living. The Center for Academic Research Excellence (CARE), designed by Studios Architecture, was completed in 2008. Each of these buildings has been highly publicized, bringing the University of Cincinnati to the forefront of design visibility that reflects 20th- and 21st-century concerns both for accommodating students’ physical needs and for raising the university’s “brand” appeal. Whether the buildings successfully address the social, personal, and contemplative needs of the student continues to be a matter of discussion.

Many accolades have been written praising the highly visible aesthetic statement achieved by the new buildings. The New York Times, for example, referring to the new building campaign, described the University of Cincinnati as “one of the most architecturally dynamic campuses in America;” the Washington Post called it “an experiment worth watching.” Students, too, have begun to assign names to some of the new buildings. Gehry’s Vontz Center, for example, is referred to as a “sculpture” and jokingly as the “marshmallow building.”

The University of Cincinnati began as a small college whose departments were housed in separate buildings across the city, lacking any unified sense of place. It has since emerged as a comprehensive research university and an international leader in campus planning and design. Over a 15-year period of master plan implementation, the university has established a cohesive campus, with walks and open spaces leading faculty, staff, students, and visitors through views of architecture and landscape architecture developed by master designers at the heights of their careers. These designed buildings and landscapes attempt to provide...
interior and exterior places in which to gather, study, and relax, and an environment that is conducive to intellectual growth, social interaction, and civic purpose.

In 2003, Nancy L. Zimpher — the University of Cincinnati’s 25th president, and the first woman to hold the position — articulated this goal in the UC|21 Academic Plan by seeking to imbue the newly built environment with “a sense of ‘place’” and “a sense of belonging for students, faculty, staff, alumni and friends”... “where members of the campus community and the community at large want to spend time — learning, living, playing, and staying,” to promote collaboration among people and programs.34

Above: Center for Academic and Research Center/Crawley Building, (Studios Architecture).
Endnotes

2 Grace and Hand, *The University of Cincinnati*, 3; It is to this time that the University currently dates its founding. Previously, university seals used the 1870 date.
4 Miami, Located 35 miles from Cincinnati in Oxford, Ohio.
5 Grace and Hand, *The University of Cincinnati*, 5. The Conservatory of Music is described as catering mainly to "well-bred ladies" and a Southern constituency. The College of Music, located downtown, had a "diverse student population, primarily masculine."
Page 86.
7 Grace and Hand, *The University of Cincinnati*, 36.
10 Grace and Hand, *The University of Cincinnati*, 41.
16 Author Unknown, *University of Cincinnati College of Medicine and the Cincinnati General Hospital Views and Descriptions*, 1914.
19 Grace and Hand, *The University of Cincinnati*, 130.
23 http://health.uc.edu/aboutus/History/history.cfm
24 Patrick Fox, *University of Cincinnati News Record*, February 27, 1967.
32 Several articles devoted to building campaigns across the country refer to the trend for universities to update their identity through the latest architectural designs.
34 University of Cincinnati website, online at http://www.uc.edu/uc21/ataglance.html.

Photography

All photography for Chapter 2 was supplied courtesy of the following entities:
John Milner and Associates
Public Library of Cincinnati and Hamilton County
University of Cincinnati:
Academic Health Center Photo Services
Administration and Finance, Planning + Design + Construction
University Libraries
Archives & Rare Books Library
University Digital Collections
University Photo Services
Introduction

America’s history of conceiving, designing, and building college campuses now stretches back nearly four centuries. This chapter establishes relevant historic contexts for considering buildings and landscapes of the University of Cincinnati campus, including those newer works of signature architecture and landscape architecture, within the national spectrum of campus planning. In this context, the evolution of the University of Cincinnati campus is to be understood as having achieved a unique sense of place with strong local and national significance that is worthy of “preservation.”

Campus Planning in America

Higher education was on the minds of even the earliest American settlers, who in 1640 established Harvard College, basing its design on the English higher education system of centralizing instruction in one complex that served the entire country, as at Oxford and Cambridge. The number of degree-granting institutions in the colonies reached nine by the time of the American Revolution and, by the late 18th century, Americans had broken from the English system to disperse higher education among independent colleges. These were frequently located in rural landscapes with views to natural surroundings that were thought to have a favorable impact on students’ mental and physical health.

The design and planning of early American college buildings were highly diverse. At Harvard, for example, a three-sided open courtyard plan
prevailed while the original scheme for the College of William and Mary formed an Oxford-like enclosed quadrangle, which later developed into one large building flanked by smaller structures. Several colonial colleges operated single large buildings that often had expansive greenswards in front. At Princeton, this green space was created by purposely setting back the building from the road.

Expansion of college campuses in the colonial period often produced very different spatial patterns than those found at English colleges, which tended to be inward-looking, with buildings based around a courtyard. American colleges were extroverted, with separate buildings set in open landscapes. In 1826, Thomas Jefferson initiated a different approach to higher education in the United States. His creation of an “academical village” dedicated to “enlightened dialogue between students and teachers,” with the focal point and largest building designated as the library, suggested a commitment to research and continuing study that previously had not existed at American colleges.

The years between the 1820s and the present would find all American universities responding to the forces of history and change. In that time, America’s higher education institutions have continued to change in response to increased enrollments, technological advances, and evolving perceptions of the role campus planning should play in influencing pedagogy. Aside from attempting to satisfy physical needs, a continuous thread in campus planning has been the expression and reinforcement of the universities’ symbolic image. Some 160 years later, in 1984, this would motivate lead University of Cincinnati administrators and President Joseph A. Steger to seek a visionary plan for a campus that appeared to have grown exponentially without direction. The university would engage contemporary American landscape architect George Hargreaves to re-imagine the campus plan. Cutting-edge architectural and landscape design ideas would provide a forward-looking image for the new campus. Some have suggested that, by creating a “Renaissance on the River” campus plan, the university was signaling its commitment to excellence.

Early Campus Planning and the Rural Setting

Between 1820 and the Civil War, American higher education experienced a surge in students whose numbers increased to 800 at all colleges. In keeping with design ideas of the time, the buildings were frequently constructed of stone in a classical style. The Greek-temple form was favored because it expressed democratic ideals of the republic and the role of education. Academic enclaves in the early 19th century were set apart from the local villages or towns that were initially thought to be poor influences on impressionable students, and campuses were designed with picturesque settings. The advantages of rural over urban locations were much debated, and the “college system” was criticized as being too strongly centered on religious affiliation, excessively strict, and elitist. Some complained that colleges were isolated from communities and therefore insulated from the “salutary restraint of public observation.” Nevertheless, the idyllic influence of nature was integrated into the design of urban colleges such as Yale, where park-like settings were created as integral components of the building scheme. In Cincinnati, an exception to the preference for locating colleges in rural settings was Xavier
University, a Catholic college. Situated on Sycamore Street, Xavier’s urban location tended to evoke a more European character than the Anglo-American system.

Cincinnati College, too, opened in an urban area, close to the pollution of factories, but later moved deliberately out of the downtown basin to the hillside above which was accessible by streetcar, and thence to the hilltop ridge at the edge of a city park. Perhaps because it had begun as an urban institution with strong ties to the city, the University of Cincinnati continued to foster connections with the city, despite its physical removal from its original urban location through the medical school, which provided facilities both for teaching and for serving the population, and through the university’s seminal cooperative education program, which forged a link between education and work experience and remains a renowned and integral part of the university program today.7

University Beautiful and the Beaux Arts Tradition

In the late 19th century, the American higher education system began moving away from the concept of independent colleges and toward a university curriculum and pedagogical philosophy. Initially, Americans emulated the German example of a university as a collection of departmental faculty devoted to scholarship and teaching, usually housed in individual “colleges.” However, the earlier American collegiate tradition had become entrenched to such a degree that “college” and “university” models began to coalesce. What emerged was a highly democratized system that provided education for increasingly larger numbers of students — both men and women — often with very different goals, including technical and liberal arts education, and undergraduate and graduate study. Such diverse interests required a new form of planning. Where the earlier American college had been expressed as a “village,” the new university would be a “city.”8

Following the sensation of architect Daniel Burnham’s “White City” at the World’s Columbian Exposition of 1893 in Chicago, universities adopted a “City Beautiful” planning philosophy derived from Beaux Arts principles
of monumental organization. These included a strong adherence to symmetry, connecting disparate buildings through axial alignments that ran through building interiors and across landscaped spaces, constructing significant buildings at focal points which terminated long axis in the landscape, and employing hierarchical circulation patterns that featured central walkways with secondary routes leading from them.

At the University of Cincinnati, campus planning reflected these national trends and embraced the Beaux Arts design and architectural style for a time. The original linear arrangement of a group of buildings on a knoll or ridge was augmented with buildings constructed in a courtyard or quadrangle arrangement along an intersecting axis. Instead of the eclectic Italianate style of Hannaford’s McMicken Hall, the university employed a classical Beaux Arts aesthetic in grouping Baldwin Hall, Old Chemistry Building, and Swift Hall. These buildings are characterized by their monumentality, with flat roofs and attic stories, colossal columns emphasizing double doorways, dentil moldings on cornices, and limestone banding between stories. Later, Braunstein Hall and Wilson Auditorium would further extend the north side of the quadrangle to link green space to the “Clifton Arc” in front of McMicken Hall and to Clifton Avenue. However, the university was not entirely dedicated to following this model and did not adopt it as its standard.

The Influence of Modern Architecture

Universities in the 20th century gradually came to more closely resemble urban environments, sharing their attendant problems: dense but fluid populations, conflicting land-use patterns, traffic congestion, and diverse (sometimes opposing) interests. Changes in architectural styles and philosophies began to influence the way campus plans developed. The southern Chicago campus of the Illinois Institute of Technology was among the first in the United States to employ modern architecture. Mies van der Rohe’s Crown Hall, his first steel-and-glass campus building from 1956, retained classical ideals in its design and might not, therefore, be considered truly modern in plan. As colleges weighed the pros and cons of introducing modern architecture to their campuses, uncertain of the effect this new style might have on the college image, Frank Lloyd Wright designed the campus of Florida Southern College, a free-flowing campus...
plan freed from the classical constraints of hierarchical, symmetrical organization and connections. Wright’s architecture was rooted in nature and expressed an organic concern with native materials and forms and with the site. Reflecting on his design for Florida Southern, Wright opined that “[i]n Organic Architecture then, it is quite possible to consider the building as one thing, its furnishing another and its setting and environment still another. The Spirit in which these buildings are conceived sees all these together at work as one thing.”

Organic architectural expression of the importance of individual buildings greatly influenced the planning process. In a move away from the design model where buildings contributed to a unified plan, Joseph Hudnut, chair of the planning department at Harvard University, declared all attempts to bind universities to master plans have been failures. Instead, Hudnut advocated a system of free-flowing “organic” development in which buildings could be conceived as individual components that bore no relation to the general composition of a campus. Insisting that individual architecture was more important than coherent planning, he said: “Let no building depend for its character upon its relocation to another, nor let any of the open spaces be of such absolute proportions that new construction built into them will destroy them.”

This theory of free-flowing development was soon tested as buildings appeared ad-hoc on campuses where there was space for them. Large unconventional building forms for lecture halls, dormitories, and student unions were built to fulfill the needs of increasingly large student populations. Yale’s President A. W. Griswold rejected a coherent university campus style or pattern of development in favor of buildings that created an “effect” and expressed the university’s modern interest in diversity. The university embraced contemporary architects of distinction such as Louis Kahn, Eero Saarinen, Paul Rudolph, and Gordon Bunshaft. At the University of Cincinnati, modernist aesthetic and planning concepts debuted with the construction in 1952 of George Roth and James E. Allen’s Alms Building, and James E. Allen’s the College of Design, Architecture, Art, and Planning (DAAP) wing, built in 1958.

The post-World War II college population boom prompted a building phase at campuses around the country and also resulted in changes in the types of colleges available to prospective students. More young people desiring higher education were also restricted by their economic means, leading to the inauguration of programs catering to students who worked full or part time while also attending classes. This phenomenon produced a proliferation of community college “commuter campuses” in the 1950s and ‘60s and affirmed the need for colleges to be located within easy reach of both city centers and suburbs. As a precursor of this trend, the University of Cincinnati’s own Evening College was organized in 1938 and continued until 2002 (individual evening classes had begun as early as 1902).

Physically, these more urban colleges tended to have less land on which to expand, and some grew vertically rather than horizontally. At UC, rapid growth in enrollment through the 1960’s pushed the edges of the campus into the Corryville and Clifton neighborhoods to achieve “superblock” proportions in order to accommodate new housing and surface parking.
In the late 20th and early 21st century, landscape design tended to challenge the intellect and use both existing and invented topography to shape the open spaces that complement the buildings. A 2005 exhibition of new landscapes at New York's Museum of Modern Art, “Groundswell: Constructing the Contemporary Landscape,” portrayed these new landscapes as “intelligent sites” with multivalent characteristics encompassing “the physical properties of the ground, its history, and the program for the new landscape.” Landscape architect George Hargreaves is thought to have learned lessons from earth artists like Robert Smithson, sculpting the land into shapes with strong symbolic resonance. At the site of Peter Eisenman’s Aronoff Center, which “cascades down a hill,” Hargreaves formed a series of long mounds that are both sympathetic to the architecture and strongly reminiscent of Ohio’s Indian burial mounds.

This new landscape architecture, like architecture, became more concerned with the expression of the design process. In his early work, Hargreaves, looking for a way beyond the “formulaic language of landscape architecture” that would break from the “reflexive use of the English picturesque for public parks on the one hand, and the reliance on the balanced, asymmetrical geometries of modernism for urban plazas on the other,” found inspiration in contemporary art, specifically sculpture and the repetitive units of minimalist art. Scholars like John Beardsley suggested that Hargreaves found the solution in a more “open-ended” approach that generated design in response to the conditions at a particular site. Beardsley took note of Hargreaves’ discovery that a
compelling combination of factors, including time, gravity, erosion, human commerce, and the physical properties of all matter could render a landscape “extraordinarily meaningful.” Hargreaves gradually developed a flair for the structural and symbolic use of sculptural form. His landscapes are regarded as settings in which people observe and interact with the elements, where designs establish “visual and physical connections between people and the natural systems within which they live.”

Hargreaves’ University of Cincinnati Master Plan 2000 is an exemplar of his mature work. It takes into consideration the natural forms of the land, draws on these, and emphasizes them to create focal points with additional sculptural landforms. Hargreaves also weaves the landscape between buildings in an attempt to create dynamic spaces that draw the pedestrian from one part of campus to another.

Elsewhere, urban campuses have also been paying more attention to green space, developing plans that include planting large numbers of trees and using landscape to create communal spaces where students can relax, interact, or simply move from one building to the next in a congenial atmosphere. By energizing the density and the vibrancy of their urban locations, colleges and universities are recognizing the need to provide outdoor spaces that give students greater opportunities to interact at a different pace than in the classroom. Around the country, concepts being explored in campus master plans include leveraging historic landscape features to recreate green spaces infused with a sense of tradition; creating spaces that blur the boundaries between interior and exterior and increase the sense of community; and establishing multi-purpose student centers that consolidate amenities and expand options for interaction.

At the Illinois Institute of Technology, an early landscape design will be reinstated with the planting of more than 1,000 trees; at the University of Wisconsin, a new master-planning effort emphasizes the key concept of “urban pedestrian landscapes.” At the University of Cincinnati, the creation of such communal spaces has added to the dynamic nature of the campus. The CCM Village renovation designed by Laurie Olin, for example, received a 2001 Honor Award from the American Institute of Architects for the “imaginative reuse of existing buildings that provides an attractive interior and exterior gathering place for the performing arts.”

Subtle landscape and environmental elements can make extensive, discontinuous campuses cohere into harmonious academic communities. David J. Neuman, University of Virginia architect, espouses a strong planning armature as a key to a successful campus. Neither memorable architecture nor distinctive landscapes by themselves can make a good campus. It is the interplay between the two; the order of the whole that counts. While signature buildings and landscapes have become a high priority among university and public officials, planning — which brings the two together to create a more meaningful place — is paramount. Planning is the key to a comprehensive vision that integrates the physical campus with institutional identity. As Vassar College President Frances Daly Ferguson put it, without planning, “even the most beautifully situated campus can be ruined by poorly located buildings and bad open space.”
Chapter 3

Signature Architecture and 21st-Century Campus Planning

At the turn of the 21st century, city planners are expressing new optimism about the ability of large-scale development to reshape and reinvigorate the American urban environment, echoing Daniel Burnham’s famous dictum to “make no little plans.” The success of Frank Gehry’s Guggenheim Museum in Bilboa, Spain, in attracting visitors and infusing new economic vitality and physical vibrancy in a declining industrial city center, has inspired other cities to give the go-ahead to master plans that include “big name” architectural and landscape designs for large-scale building projects. In the City of Cincinnati there has been a long history of engaging recognized designers to add aesthetic currency and practical amenities conducive to attracting visitors and potential residents to the city. Zaha Hadid’s design for the Contemporary Arts Center is but a recent example. This new attitude toward planning “big” is seen by some as a reinterpretation of Jane Jacobs’ cautionary lessons for creating lively neighborhoods. Other commentators are, naturally, still skeptical about the possibilities inherent in tall towers to create lively streetscapes.21

Trends in campus planning and design around the nation can be understood, in part, as responses to students who have grown up amid revolutionary developments in the sciences and communication technologies and an increasing tendency to integrate disciplines. The 21st century student has high expectations of the built environment. Surveys of visiting students place an attractive and interestingly built environment high on the list of positive attributes of a campus. This is but one of the most visible ways of attracting visitors and students.

Campus development has also come to depend on a broad base of private donors and the development of public–private partnerships to supplement limited state funding. In a climate where cities are doing the same, university planners recognize the importance of “signature” architecture and landscape architecture in attracting both students and donors. It is not coincidental that urban campuses, like the cities they inhabit, are reinventing themselves to project a unique sense of place or “brand identity” that will boost their economies, manage population growth, and exploit local natural and cultural resources.
The University of Cincinnati has, since the 1990's, led the way in using highly expressive architecture and landscapes to help attract top students and funding. This approach is now being employed at schools as diverse as the University of Illinois, the University of Missouri, St. Louis University, the University of Dayton, and Youngstown State University in Ohio. The designers of many of the new buildings at the University of Cincinnati have been recognized as masters of late 20th and early 21st century architecture. Two have been awarded the prestigious Pritzker Architecture Prize (Frank Gehry in 1989 and Thom Mayne of Morphosis in 2005). Moore Ruble Yudell Architects received the American Institute of Architects Firm Award for 2006, at which time their work was applauded for “its spirited celebration of habitation at many scales and its respect for people, context, and place.” At UC, although the unifying vision of George Hargreaves’ master plan considered buildings as “infill,” signature architects—chosen on the basis of their reputations as innovative designers—exhibited a notable desire to successfully realize the plan by collaborating both with each other and with Hargreaves. Concepts and designs were shared on an interactive Web site, and architects discussed their progress with one another, ensuring that site and buildings were created in collaboration.

The adoption of cutting-edge design by leading architects has attracted critical notice and popular attention to the University of Cincinnati. Some critics have struggled to classify the styles these designs express. Each building is highly representative of an individual architect’s style. Several of the buildings, in particular Thom Mayne’s Campus Recreation Center, Frank Gehry’s Vontz Center for Molecular Studies, and Peter Eisenman’s Aronoff Center for Design and Art, have been described as both deconstructivist architecture and as expressionist modern — perhaps because, stylistically, they incorporate some of the philosophies of both expressionism and modernism. This new design expression has also been variously called “complex architecture” and an “architecture of movement.” Not only is movement implicit in the building forms, where walls and floors are often angled as if in a state of arrested motion, but curved outer edges also lead the eye to views beyond, and materials direct the eye to views of adjacent or nearby buildings and landscapes.

Individual buildings are also given physical and psychological meaning: Peter Eisenman’s Aronoff Center has been described, for example, as “confronting the curvilinear with the gridded,” and as recording “processes of its own metamorphosis, frozen in time.” Architecture critic Herbert Muschamp of The New York Times described the building at once as “cheerful, bewildering, generous, controlling,” and something that “one works through as if it were an emotional problem.” Michael Sorkin explained the work of Frank Gehry as “informing fantasies of tipped facades and rotating masses, a simulation of instability.” Thom Mayne’s Campus Recreation Center is a multifaceted building that “juxtaposes key components of student life — eating, sleeping, studying, exercising,” and focuses these activities at the center of the campus, an unusual concept given that traditionally, such accommodations have been located on the periphery of campuses. The Campus Recreation Center is understood by Mayne as a connective building that also has a powerful individual presence. According to one critic, it “cannot be fully grasped from any single viewpoint.” Of all the architects who have designed buildings at UC since 1990, Mayne (and, perhaps, Gehry) is the most difficult to define. Mayne’s approach has
been described as more global in scope, drawing neither from European modernism, American precedents of the last century, nor Asian influences. Perhaps this is the quintessential message that universities today hope to convey: that they are as diverse as the world itself, offering students and faculty immense possibilities with a global reach. Mayne’s buildings exhibit a “strong family resemblance” with an “explosive energy and angularity in plan and elevation, a demonstrable affection for exposed structure and metallic skins, a joy imposing and then solving complex formal and functional questions.” The Campus Recreation Center is “an explosive collage of taut muscular shapes in glass and metal” that “impart energy and activity to public spaces that surround and penetrate it.” By comparison, glass and metal are employed to different effect in the Joseph A. Steger Student Life Center (Moore Ruble Yudell Architects and Planners) to connect interior and exterior spaces both physically and psychologically, working together to provide the interwoven details of the campus plan. Wide bays and galleries present views toward gardens and terraces, and offer a transparency of the interior to those on the outside.

UC’s signature buildings have attracted critical appraisals and acclaim, and they have contributed to a new campus that is dynamic and engaging. Architecture critic Herbert Muschamp declared that the University of Cincinnati campus has risen to the challenge that also faces contemporary cities which cry out for life once more: “Show us something new. Give us big, urban objects that we can look at, discuss, love or despise.”

Significance

The considerable number of scholarly articles dedicated to the University of Cincinnati Master Plan 2000 in the recognized literature of the design profession, strongly suggests that sufficient research and evaluation have been provided within which to discern the property and its role in the context of 20th- and 21st-century campus planning.

Is the transforming work that has remade UC’s campus significant? The recognized standards for analyzing and evaluating historic or cultural resources strongly suggest that the answer is “yes.” The UC campus is significant for its physical design and construction as it embodies “distinctive characteristics of a type, period, or method of construction,” representing the works of those recognized within the design professions as highly esteemed artists; possessing high artistic value in the estimation of critics in the public realm; and representing a significant and distinguishable entity even when its components do not share a consistent level of individual distinction.

The University of Cincinnati Campus Heritage Plan approaches the question of preserving buildings and landscapes by signature designers:

Buildings
- Aronoff Center for Design and Art, Eisenman Architects
- Center for Academic and Research Excellence (CARE)/Edith J. Crawley Building, Studios Architecture
- College-Conservatory of Music, Pei, Cobb Freed and Partners
- Vera Clement Edwards Center, Skidmore, Owings & Merrill
- Engineering Research Center, Michael Graves & Associates
- Richard E. Lindner Center, Bernard Tschumi
Chapter 3

- Campus Recreation Center, Morphosis Architects
- Joseph A. Steger Student Life Center, Moore Ruble Yudell Architects
- Tangeman University Center, Gwathmey Siegel & Associates
- University Pavilion, Leers Weinzapfel
- Vontz Center for Molecular Studies, Frank O. Gehry

Landscapes
- Campus Green, Hargreaves Associates
- DAAP Landscape, Hargreaves Associates
- Eden Quadrangle, Hargreaves Associates
- Library Square, Hargreaves Associates
- MainStreet, Hargreaves Associates
- McMicken Commons, Hargreaves Associates
- CCM Plaza, Laurie Olin
- The Mews, Moore Ruble Yudell Architects
- Sigma Sigma Commons, Hargreaves Associates
- University Commons, Hargreaves Associates
- Zimmer Roof Garden, Hargreaves Associates

Significant “mature” or historic buildings also formed the campus before the implementation of the Master Plan 2000 and are important for the ways in which their “force fields” influenced that plan in determining the placement of new buildings and landscapes. These buildings provide the background narrative of the university’s past:

West Campus
- Alms Building
- Van Wormer Hall
- Baldwin Hall
- Old Chemistry Building
- Swift Hall
- Memorial Hall
- Dieterle Vocal Arts
- Braunstein Hall
- Teachers College/Dyer Hall
- Blegen Library
- McMicken Hall
- Tangeman University Center
- University YMCA
- Wilson Auditorium

East Campus
- Health Professions Building

Understanding the physical evolution of the campus within local, regional, and national or international planning and design trends provides a framework for appreciating the heritage to be passed to future generations and for approaching the ongoing need for change in the campus environment. What are the appropriate treatments for the stewardship of the university’s resources? Having said “yes” to the question of significance, we can examine the characteristic features and materials of buildings and landscapes to decide what strategies should be used to address the process of change and adaptation. This is the subject of the University of Cincinnati Campus Heritage Plan.
Endnotes

1 Turner, Campus Planning, An American Tradition, 83.
3 The Dean of the Architecture, Art and Planning program at the University of Cincinnati had a prominent role in suggesting that signature architecture be part of the new visionary plan (see Chapter Two, History).
17 Patricia Alex, September 27, 2006, “Rutgers unveils its makeover visions; Concepts Designed to Spur Discussion.”
20 Ibid.
23 AIA Awards online at www.AIA.org
28 Sarah Amerlor, Architectural Record, October 2006.

Unless otherwise noted all photographs in Chapter 3 are contributed by the University of Cincinnati.
Significance and Change at the University

Since its establishment on the ridge at Burnet Woods in 1885, the University of Cincinnati (UC) has moved through various periods of development significant to its history, including, most recently, the construction of signature buildings and landscapes that have transformed the campus. These projects have received national attention and are exemplary in how they incorporate contemporary attitudes and trends in campus planning and design.

The campus and its buildings and landscapes cannot be frozen in time. A familiar axiom tells us that change is the world’s only constant. As is true anywhere on Earth, change will continue at the University of Cincinnati. This Campus Heritage Plan will help guide future change at UC as it relates to the university’s historic and signature buildings and landscapes. This chapter describes the underlying principles for accommodating change where buildings and landscapes are considered significant and worthy of a preservation ethic. The chapters that follow will apply these principles in their recommended treatments for specific buildings and landscape areas.
To provide context for a preservation strategy, it is helpful to recall some of the decisions made in the years leading up to the University of Cincinnati Master Plan 2000. The year 1948 was seminal in the evolution of the University of Cincinnati campus. In that year, old McMicken Hall was torn down, and salvaged bricks were used to build a new McMicken Hall on the footprint of the former building. Old McMicken, built in 1895, was the first campus building to be established on the ridge at Burnet Woods. The new McMicken Hall, designed in a traditional neo-Georgian style by longtime university architect Henry Hake, clearly marked the end of an old era rather than heralding the beginning of a new one.

Between 1895 and 1948, campus planning and design at UC was representative of the Picturesque and Beaux Arts traditions. The Picturesque is seen in the original siting of McMicken Hall and its two wings on the ridge of Burnet Woods, an urban city park originally envisioned with curving roadways and naturalistic landscaping in the Olmsted park tradition. The later siting of Baldwin Quad on a subsidiary ridgeline, at an angle to McMicken, and the siting of the early athletic field (now Nippert Stadium) and Schmidlapp Gymnasium (now the Dieterle Center) in a ravine, also at an angle to McMicken, are remaining examples of the Picturesque’s influence in planning the early campus to work with natural topographic conditions. Today’s roadway on the north edge of McMicken Commons, which curves around the south of Baldwin Quad into what is now MainStreet, is a remaining trace of the original park road system. These features faintly echo the earliest period of the campus’s evolution while continuing to influence its current identity, in that the key orientations and alignments they established would become the “force fields” of the current master plan.
The university’s Beaux Arts tradition can be seen today in the courtyard form of Baldwin Quad and in the other early 20th century buildings still existing along Clifton Avenue. Memorial Hall, the original portion of Tangeman University Center, and Nippert Stadium also remain from this period. The grid of the city street pattern that extends into the campus from Jefferson Avenue is the only remaining echo of a neighborhood of residential houses that existed on the east side of the campus into the early 1960s.

The University of Cincinnati’s early history ended with the aforementioned reconstruction of McMicken Hall, in 1948. The year 1952 saw the construction of UC’s first modern facility, the Alms Building. The movement from McMicken’s neo-Georgian to Alms’ modern style marked a significant change. Although the campus landscape as a whole did not change radically until the early 1960s, a new era had begun.

As discussed in Chapter 2, radical change occurred between 1964 and 1989, ushered in by enormous growth, the transformation of the university into a nationally ranked research institution, and the reshaping of the modest and traditional early campus into a dense urban complex. This period of growth was important in university history, although it resulted in a campus landscape that the university would seek to reshape in later years.

Although two high-rise residential buildings from this period have been demolished, numerous other modern buildings from the period remain and still actively contribute to university life. The design and functional qualities of these buildings vary; some are handsome examples of their type. Care should be taken not to dismiss these buildings simply because they were created during a difficult period in the university’s physical evolution or because modern buildings of the 1960s and 1970s are currently being
reviewed for preservation. When contemplating the future, university planners should apply to these modern buildings the same careful process of thought and analysis that was followed with earlier university buildings now considered historic.

As discussed in Chapters 2 and 3, the University of Cincinnati Master Plan 2000, which was adopted in 1991 and became fully developed in 2000, brought a unifying vision to the campus and laid the groundwork for a landscape that is still evolving today. Compared to the haphazard and somewhat forbidding urban sprawl that existed in 1990, the campus today is a pleasing and stimulating place, largely because of the master plan. Add to this the national recognition that UC has received for its expression of contemporary thought and design, and the master plan becomes a significant work in the body of campus planning literature.

The University of Cincinnati Master Plan 2000 is an established document, the product of more than a decade of thought and evaluation. While it has contributed to a unifying vision for the campus, it should never become static; rather, it should be the blueprint for continued evolution. The philosophical design concepts underlying the master plan encourage movement and dynamic relationships between outdoor spaces and the buildings that help define them. The master plan’s concepts of pedestrian and vehicle accessibility, clear lines of connection between important places, and positive open spaces that unify buildings and landscapes while also providing variety will remain as underpinnings of campus planning and design at the university. These design concepts are distinct, however, from the execution of the specific landscape and building designs that have been implemented within the master plan’s conceptual framework. The master plan should continue to be the inspiration and guideline for the continued evolution of the university campus. However, it should never hinder continued reevaluation or ongoing change, lest the campus become stagnant.

With this in mind, the master plan should be viewed as an evolving document, to be periodically and regularly updated. Underlying concepts and the physical recommendations to which they lead should be adjusted, adapted, and revised in a way that respects the concepts and processes of the plan but also takes in new information through observation, experience, and reflection. Designs that have been implemented within
the plan’s framework should, likewise, be monitored and evaluated. Information about how well buildings and landscapes have succeeded in addressing the programs they were intended to fulfill, as well as whether they have been successful in implementing concepts and goals of the master plan, should feed into the process of adjustment and adaptation. This Campus Heritage Plan describes one step in that process.

Buildings and features predating 1948 should be considered historically significant and treated as historic resources. In general, the university’s historic buildings have been well maintained and respectfully treated, although some, such as Wilson Auditorium and the University YMCA, are awaiting appropriate reuse. Buildings and features dating from the university’s modern period, 1948 through 1990, should be treated with care on a case-by-case basis so that buildings and features that may later be considered significant are given a fair assessment. Buildings such as Alms, Rhodes, and Baldwin may be valued for the quality of their design. A building such as Crosley Tower, although monolithic, may be valued as a local landmark.

Many of the buildings and landscapes constructed at the university over the past 27 years were designed by recognized contemporary masters and may themselves be considered masterworks. This plan recommends that the signature buildings and landscapes constructed since the adoption of the master plan in 1991 be considered contemporary works of art that may be of national and local historical significance. Great care should be exercised in undertaking changes to these buildings and landscapes, and they should be treated as though they have been determined to be historically and architecturally significant, as indeed they probably are.

Recognizing that changes are inevitable, the process for addressing change (including ongoing maintenance) should be similar to that used for historic buildings and landscapes. This process will use the recommendations of historic preservation, including the defined preservation treatments applicable to historic resources and the Secretary of the Interior’s Standards, which serve as design guidelines for applying appropriate preservation treatments. Both preservation treatments and the Secretary’s Standards are discussed below. All these resources will benefit by addressing potential future change through a historic preservation perspective.
The University of Cincinnati campus has undergone major change since the early 1960s. To some, buildings from the university's modern period, 1964 through 1989, have massive institutional personae that lack the appeal and sentiment of ivy-covered neo-Georgian halls. Alumni who attended the university in the 1960s, '70s, and '80s (the current pool of potential donors) recall urban high-rise buildings set amid a sea of parking lots. Today, rather than relying solely upon historic buildings and picturesque landscapes, the university's image draws instead upon the dynamic contemporary artistic character of the signature buildings and landscapes that now dominate the campus.

Now that the frenetic building campaign of the past 15 years has come to a pause, UC's current image is the one it will carry for the indefinite future. That image consists of (a) remaining historic buildings, (b) remaining modern buildings, (c) recent signature buildings, and (d) the campus landscape that attempts to weave them all together. These elements now are mostly in balance, and the job in the coming years is to fill in, enhance, fine-tune, and correct problems.

A real danger to these contemporary “signature” works of architecture, which seem so intellectually aggressive, dynamic, fresh, stimulating, and curious to many people today, is that they may seem dated in 10 to 20 years. Many architectural and landscape design styles experience a period of decline in appreciation as tastes change. The buildings of the 1960s and 1970s are in this period now. Buildings and landscapes of the early 20th century that are now considered historically significant went through a similar period of disfavor in the 1950s and '60s. Buildings going through this period face a greater risk of being taken for granted, inappropriately altered, neglected, or lost. As they emerge from such periods, they can be rediscovered, viewed with fresh eyes, and appreciated again. The Campus Heritage Plan stresses the importance of the signature buildings and landscapes and can be used to help mitigate any potential period of disfavor, if future university administrators follow its recommended process for appropriately accommodating change.

One key issue with the signature buildings and landscapes is maintenance. These buildings and landscapes were expensive and cutting-edge. In some cases they were constructed with new materials and complex assemblies, the maintenance characteristics and life cycles of which may...
not yet be known. As a result, maintenance needs may be intensive and relatively costly. As with historic buildings, inappropriate maintenance for these materials and systems could lead directly to even more costly problems in the future. The issue of maintenance and sustainability needs to be studied individually, with the goal of reducing costs and increasing lifespan while preserving building and landscape character. Issues related to maintenance are outlined by resource in Chapters 5 and 6.

Issues have also arisen regarding how the signature buildings and landscape fulfill the programs for which they were intended and about the usability of some of the spaces. The university cannot afford to have spaces and facilities that do not serve their intended programmatic purpose. Again, these issues must be examined on a case-by-case basis, and interventions must be crafted that preserve building and landscape character while addressing needs. These issues are also discussed in Chapters 5 and 6.

Agents of change at UC can be summarized in five broad categories, most of which have been mentioned previously:

- Changes in use influenced by growth, expansion, and the introduction of new programs;
- Changes in programs that cause existing facilities to no longer be adequate, such as changes influenced by technology, teaching methods, research needs, user expectations, required support facilities, and building systems;
- Lack of appreciation due to changes in taste, leading to inappropriate alterations, neglect, or loss;
- Maintenance issues that are addressed using inappropriate techniques that damage existing materials, compromise existing systems, and/or alter appearance; and
- Buildings or spaces that do not work for their intended use.

The following preservation treatments, guidelines, principles, and processes for decision-making are intended to help the university accommodate change while preserving and enhancing the existing character of its buildings and landscapes.
Preservation Treatments

The historic preservation field uses a variety of terms to describe treatments that may be applied to historic preservation. Although many of these terms are used loosely in discussions about historic buildings, they have specific meanings. Four key terms are generally used to describe the treatment of historic buildings and landscapes: Preservation, Rehabilitation, Restoration, and Reconstruction.

Of these four terms, Preservation treatment requires retention of the greatest amount of historic fabric, features, and materials. Rehabilitation treatment acknowledges the need to alter or add to a property to meet continuing or new uses while retaining historic character. Restoration allows for an accurate depiction of the property's appearance at a particular time in its history. Reconstruction establishes a framework for re-creating vanished historic elements with new materials.

In planning for changes to UC's historic and signature buildings and landscapes, Preservation and Rehabilitation are the most appropriate and applicable treatments for consideration and use. These terms have been applied in recommending overall treatment approaches to individual buildings and landscape character areas in subsequent chapters of the Campus Heritage Plan. The protection, maintenance, and repair of historic resources should always be a priority and should precede other considerations related to intervention. Appropriate treatments for individual buildings, landscapes, features, and management zones should be identified consistent with the recommendations included in these guidelines when projects are in the early planning stages. How this should be accomplished is outlined below in the chapter section titled “Process for Accommodating Change.” Subsequent chapters provide further information on treatment on an individual basis.
Preservation

Preservation is defined as the process of applying measures necessary to sustain the existing form, integrity, and materials of a historic property. Work, including preliminary measures to protect and stabilize features, generally focuses on the ongoing maintenance and repair of historic materials and features. Removals, extensive replacement, alterations, and new additions are not appropriate. Preservation stresses protection, repair, and maintenance. Preservation should be the baseline treatment for buildings and landscapes that are too significant and important to change.

Rehabilitation

Rehabilitation is defined as the process of creating a compatible use in a historic property through carefully planned minimal alterations and compatible additions. Often referred to as adaptive reuse, Rehabilitation protects and preserves the historic features, materials, elements, and spatial relationships that convey historical, cultural, and architectural values. In this context, new, expanded, or upgraded facilities should be designed to avoid impacts to character-defining historic elements. They should also be constructed of compatible materials. Retention of original historic fabric should be the primary consideration in undertaking a program of rehabilitation and adaptive reuse. Rehabilitation accommodates needed change and is the most appropriate treatment for most buildings and landscapes at UC.

Restoration

Restoration refers to returning a resource to its appearance at a specific previous period in its history. Restoration is the process of accurately depicting the form, features, and character of a property as it appeared at a particular time removing features from other periods in its history and reconstructing missing features from the desired period. In this context, historic plans, documents, and photographs should be used to guide the work. Limited and sensitive upgrading of mechanical, electrical, and plumbing systems, as well as code-related work to make a property functional, are all appropriate within a restoration project. It is unlikely that restoration will be a treatment used for projects at UC except for possible isolated, special circumstances.

Reconstruction

Reconstruction is defined as the process of accurately depicting the form, features, and character of a non-surviving historic property using new construction for the purpose of replicating its appearance at a specific period of time and in its original location. A reconstruction is a new resource made to replace an historic resource that has been lost. Reconstruction is not anticipated to be relevant to future projects at the university.

Secretary of the Interior's Standards

The philosophy behind the recommendations in this plan is based on a set of federal guidelines entitled The Secretary of the Interior's Standards for the Treatment of Historic Properties. Commonly called the Secretary of the Interior's Standards, they were established by the National Historic Preservation Act of 1966 to provide national benchmarks for the treatment of historic resources. An individual set of standards and guidelines was developed for each of the four commonly identified historic preservation
Chapter 4

The durability of the Secretary's Standards is testimony not only to their soundness, but also to the flexibility of their language. They provide a philosophy and a sensitive approach to assessing changes and problem-solving for those involved in managing the treatment of historic buildings, rather than a set of solutions to specific design issues. Following a balanced, reasonable, and disciplined process is often more important than the exact nature of the treatment option that is chosen. Instead of predetermining an outcome in favor of retaining or recreating historic features, the Secretary's Standards ensure that all the critical issues are considered. The Secretary's Standards are also useful in consideration of the construction of new buildings in an historic context and the alteration of older buildings as necessary for reuse, safety, accessi-
bility, or maintenance. As with any public policy issue, the public interest in preserving historic buildings and landscapes must be balanced with other public interests.

The 10 standards that make up The Secretary of the Interior’s Standards for Rehabilitation are quoted in full below, followed by a brief discussion of the implications of each.

Standard 1 – A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

Standard 1 recommends compatible use in the context of adaptive reuse and changes to historic buildings and landscapes. This standard encourages owners and managers to find uses that retain and enhance historic character, not detract from it. For example, the work involved in reuse projects should be carefully planned to minimize impacts on historic features, materials, and spaces. The destruction of character-defining features should be avoided.

Standard 2 – The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

Standard 2 recommends the retention and preservation of character-defining features. It emphasizes the importance of preserving integrity and as much existing historic fabric as possible. Alterations that repair or modify existing historic fabric are preferable to those that require total removal.

Standard 3 – Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.
Standard 3 focuses on authenticity and discourages the conjectural restoration of an entire property, feature, or design. It also discourages combining and/or grafting historic features and elements from different properties, and constructing new buildings that appear to be historic. Literal restoration to a historic appearance should be undertaken only when detailed documentation is available and when the significance of the resource warrants restoration. Reconstruction of lost features should not be attempted without adequate documentation.

Standard 4 – Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

Standard 4 recognizes that buildings change, and that many of these changes contribute to a building’s historical significance. Understanding a building’s history and development is just as important as understanding its original design, appearance, and function. This point should be kept in mind when considering treatments for buildings that have undergone many changes. Most historic buildings contain a visual record of their own evolution. This evolution can be identified, and changes that are significant to the history of the building should be retained. The opportunity to compare multiple periods of time in the same building lends interest to the structure and helps communicate changes that have occurred within the larger landscape and community context.

Standard 5 – Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.

Standard 5 recommends preserving the distinctive historic components of a building or landscape that represent its historic character. Workmanship, materials, methods of construction, floor plans, and both ornate and typical details should be identified before work is undertaken.

Standard 6 – Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

Standard 6 encourages property owners to repair historic character-defining features instead of replacing them when historic features are deteriorated. In cases where deterioration makes replacement necessary, new features should closely match historic conditions in all respects. Property owners are urged to document existing conditions with photography and notes before any features are altered or removed. These records assist future choices that are appropriate to the property’s historic character.

Standard 7 – Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

Standard 7 warns against using chemical and physical treatments that can permanently damage historic features. Many commercially available
Chapter 4

Treatments are irreversibly damaging. Sandblasting and harsh chemical cleaning, in particular, are extremely harmful to wood and masonry surfaces because they destroy the material’s basic physical properties and speed deterioration. Potential treatments for UC’s signature buildings should be carefully considered in this regard. Some of the materials used in the buildings are new, and it is not known how they will weather over time. Potential maintenance treatments should not alter or damage these new materials.

Standard 8 – Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

Standard 8 addresses the importance of below-ground prehistoric and historic features. This issue is paramount when a construction project involves excavation. An assessment of a site’s archeological potential is recommended before work is undertaken. If archeological resources are found, some type of mitigation may be required. Solutions should be developed that minimize the need for excavation of previously unexcavated sites.

Standard 9 – New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

Standard 10 – New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

Standards 9 and 10 are linked by issues of the compatibility and reversibility of additions, alterations, and new construction. Both standards are intended to (a) minimize the damage to historic fabric caused by building additions, and (b) ensure that new work will be different from, but compatible with, existing historic conditions. The level of craftsmanship, detailing, and quality of materials should be appropriate to the significance of the resource. Following these standards will help to protect a building’s historic integrity.

The basic premise of the Secretary’s Standards is that historic resources are more than objects of aesthetic merit; they are repositories of historical information. The Standards provide a framework for evaluating preservation activities and emphasize preservation of historic fabric, honesty of historical expression, and reversibility.

Principles for Accommodating Change at UC

The philosophy behind the University of Cincinnati Campus Heritage Plan is that a historic preservation approach is appropriate to both UC’s historic and signature buildings and landscapes, and that a preservation ethic of stewardship contributes to a viable, healthy campus by preserving and strengthening character and by accommodating change in a sensitive manner. When character defining building and landscape elements are identified and preserved, the campus is enhanced as a significant and
distinctive place. Continued education of students, faculty, staff, and visitors regarding the history and significance of the university and its buildings and landscapes is important in generating appreciation and support for the appropriate treatment of its resources. Appropriate maintenance is vital to the conservation of character-defining building and landscape elements. Flexibility in planning and design is the key to developing solutions for changing needs that will last for a long time to come.

Thus, the general principles of this preservation approach encourage and facilitate the long-term preservation of character-defining buildings and landscapes, and are based on the Secretary of the Interior’s Standards, which should be considered in planning maintenance, reuse, renovations, new construction, and other future work on UC campuses:

- Continue to use a property as it was designed to be used, or find a new use that minimizes necessary changes to character-defining features.
- Identify and retain distinguishing building and landscape qualities and characteristics.
- Maintain, protect, and repair existing character-defining features, materials, and finishes. If features are deteriorated beyond repair, replace in kind.
- Be authentic: if a feature is missing or must be removed, use accurate documentation to guide replacement.
- Respect the evolution of historic changes, fashion, taste, and use.
- Do not use maintenance methods or materials that damage significant building and landscape fabric.
Where needed changes require new construction:

- Respect the evolving master plan.
- Follow an established design review process.
- Accommodate the needed program to the maximum extent possible without destroying the character of the existing resource.
- Understand that change will continue to occur.
- Respect the existing built context.
- Maintain a high quality of design and craftsmanship.
- Take a humanist approach — design places where people want to be.
- Take a sustainable approach — be responsible to society and the environment.
- Where change is necessary, existing university buildings offer opportunities for creative new uses. Often found with multiple layers of history and aesthetics, existing buildings can inspire creative and compatible designs for new construction.
- New construction should not destroy character-defining building or landscape features or materials.
- Additions and alterations to historic or signature buildings and landscapes should speak of their own time but should be compatible with the character of the existing resource.

Management Issues

Finally, any preservation approach will necessarily intersect the current, very specific management issues, concerns, and objectives of the University of Cincinnati from which the impulse for change will arise. These are the “backstory” of the setting within which change agents interact and through which the preservation principles recommended in this plan will be applied. All decisions should be made on a case-by-case basis. When the Secretary’s Standards are carefully and consistently applied, they meet the test of common sense.
Photography

All photography for Chapter 4 was supplied courtesy of the following entities:
- John Milner and Associates
- J. Miles Wolf Architectural Photography
- Public Library of Cincinnati and Hamilton County
- University of Cincinnati:
 - Academic Health Center Photo Services
 - Administration and Finance, Planning + Design + Construction
 - Archives & Rare Books Library
 - University Libraries
 - University Photo Services

Chapter 4 - 16
Chapter 5

Landscape Assessment and Treatment

Introduction

This chapter, in conjunction with Appendix C, describes and analyzes the character and characteristics of the University of Cincinnati’s signature and heritage campus landscapes using narrative description of their spatial components and materials and photographic and cartographic illustrations. Condition, management, and maintenance issues that threaten the long-term viability of these important landscapes are also raised below and in Appendix C.

This chapter suggests appropriate approaches to the future management and treatment of these landscapes, taking into consideration their role in the campus and as components of the university’s celebrated Master Plan 2000.
The signature and heritage campus landscapes discussed in this chapter include (see also figures 1-1 and 1-2 in Chapter 1):

- Bearcat Plaza
- Campus Green
- CCM Plaza
- Clifton Arc
- DAAP Landscape
- Eden Quadrangle
- Herman Schneider Quad
- Library Square
- MainStreet
- McMicken Commons
- Sigma Sigma Commons
- The Mews
- The Observatory
- University Commons
- Zimmer Roof Garden

Note: the Cincinnati Observatory "a mature building" is not shown on this map.
Overview Description of the Campus Landscapes

The University of Cincinnati campus has gained international recognition as an icon of architectural and landscape architectural design. The evolution of the university's campus has occurred over a 15-year period based on an in-depth campus master plan prepared by the office of George Hargreaves & Associates. Master Plan 2000 set about systematically updating the more-than-100-year-old campus to meet one of the most important contemporary challenges facing university administrators: how to attract the best and the brightest students, faculty, and staff in a highly competitive market. An unexpected benefit of the campus makeover has been far-reaching popular acclaim that has generated extensive publicity. The campus's collection of works by famous designers has literally put the University of Cincinnati on the map; it is currently a featured stop on regional architectural tours.
Master Plan 2000 has been the conceptual and pragmatic blueprint for the University of Cincinnati’s emergence as a recognized leader in campus planning and design. At once conceptually comprehensive and detail-oriented, the master plan has guided implementation of various university goals, such as transitioning from a commuter school to a residential college, enhancing campus walkability, establishing clear lines of connection between important places, and creating positive open spaces that unify buildings and landscapes and afford variety in the sense of place. Also of importance to the university has been the conceptualization and construction of landscape spaces suitable for the engagement of students, faculty, staff, and visitors alike in a dynamic interactive environment.

The Hargreaves master plan embraces the multi-layered relationships that exist between older features of the campus while judiciously inserting many new elements. The plan works to ensure the continued viability of historic features, such as the spatial configuration of Herman Schneider Quad. At the same time, the master plan has guided major changes to areas that conflicted with the university’s primary goals of a pedestrian-friendly environment and spaces that afford opportunities for education, recruitment, and socializing. Implementation of the master plan has led to the removal of some large buildings, such as Beecher Hall, the old book store, and Swift Annex, as well as surface parking facilities. It has also generated construction of a series of dramatic and unique new features that are without precedent or context within the campus.

The broad gestures employed by the master plan include establishment of a central spine of open space on the West Campus, use of new buildings as “infill” that supports the broad vision of place making, and the identification of a system of connective lines and axes that effectively knits the campus and its various disparate parts together. The master plan also suggested the establishment of strong relationships between interior and exterior spaces; of all the goals of the master plan, this is one where additional work remains to provide better linkages between building entrances and programmed landscape space. MainStreet, however, is an example of a successful application of this goal. This is a place where outside and inside mesh, where buildings hang over walks, and where steps that cascade down the street and serve as seating and impromptu theatre also lead to building entrances. In many cases, the interior spaces mirror or are enlivened by views to exterior spaces, and the activities going on inside are visible on the street. It stands as a model for future development on campus.

The other masterfully executed component of the plan is the handling of transitions and junctures between places and spaces. Junctions, knuckles, seams, and connections are difficult to address successfully in design. At the University of Cincinnati, transitional spaces, such as the fountain at University Plaza that edges McMicken Commons, the pedestrian bridge between Tangeman University Center and Mary Emery Hall, the theater-like stairs leading into CCM Plaza, the walkway following one of the force fields between McMicken Commons and the Herman Schneider Quad, the Light Tower that marks the transition between Sigma Sigma Commons and Campus Green, and Bearcat Plaza overlooking Nippert Stadium on the periphery of MainStreet, are often well developed and carefully considered. Steps and seatwalls, axial views and connections, and
compelling views of something interesting just around the corner draw visitors through spaces and along corridors and are often part of the transitional vocabulary. The master plan’s skillful treatment of these junctions becomes especially apparent when one experiences those areas of the campus not yet updated. These older areas have a static feeling and, in some cases, a left-over quality.

Another design issue the campus master plan has successfully navigated is the creation of an Americans with Disabilities Act (ADA)-accessible route to all buildings and outdoor features. The pronounced grade changes over the West Campus and between the two campuses pose great challenges to accessibility. The university has done an extraordinary job in developing ADA-compliant circulation routes, which often parallel or are compatible with non-accessible walks that emphasize stairs, steps, and seat walls as integral design elements.

As part of the master planning process, the university has also established a set of design standards, guidelines, and product standards for site furnishings. These design standards and guidelines provide visual clues for wayfinding and unify place making design gestures. Standards have been adopted for such features as benches, lighting, kiosks, tree grates, trash and recycling receptacles, and bike racks, as well as for certain types of paving. These help identify and reinforce the campus as a whole, as well as specific districts, such as MainStreet, where colored concrete pavers are used consistently to unify its appearance and signal its unique identity, as are lighting, tree grates, and signage. In another important design gesture, the university has adopted granite as a signature landscape material because of its durability and life-cycle cost relative to sustainability.

Environmental graphic features are also well conceived and executed on the University of Cincinnati campus. The university employs an environmental graphic designer to develop concepts for graphics and signage. These elements are designed to facilitate the continuity of buildings and open spaces and provide areas and districts, like MainStreet, with a recognizable character. In addition, the designs incorporate a consistent use of color; red is used in signage and in floral displays to reinforce brand identification.

As an urban campus, the university has many perimeter entrance portals. The master plan helped to establish an iconic design vocabulary to introduce major entrances. Campus entrances or “gateways” are typically marked by a grid of pylons with sign walls fashioned from a native Ohio stone, copper-variegated Briar Hill sandstone. The pylons are topped by copper-encased recessed lighting. Many of the entrances also feature campus identity signs constructed as curved walls with “University of Cincinnati” and the name of the specific entrance drive in bronze letters. The signs are also lit.

The University of Cincinnati has made a concerted effort to incorporate sculpture and other artworks into the built environment. Recently placed examples include “Figura Prima” by Magdalena Abakanowicz at CCM Plaza, “Belief” by Terry Allen at University Commons, and “Forest Devil” by Kenneth Snelsen at Zimmer Roof Garden. The integration of art is compelling and intriguing, and reinforces the creation of a sense of place.
Despite the natural interest of the intellectually intriguing and challenging signature works of landscape architecture that have been implemented based on the guidance provided by the master plan, including Campus Green, University Commons, The Mews, and CCM Plaza, there remain differences of opinion within the university community about the usability of some of the campus open spaces. The curiosity factor that has put the campus on the map may not be sufficient to sustain the success and popularity of these landscapes. Possible solutions are offered as part of the treatment recommendations section that follows the identification of campus character areas below.

Identification of Character Areas and Districts

Various planning documents divide the University of Cincinnati campus into a series of distinct districts or areas. These include *Master Plan 2000*, Paul Bennett’s *University of Cincinnati Campus Guide*, and a PowerPoint™ overview of the campus developed by the Office of the University Architect. Each of these assembles buildings and landscapes into definable areas; this Campus Heritage Plan presents yet another organizational system, although many commonalities remain between the systems.

The character area system presented in this plan serves two purposes. The first is to help organize information and establish smaller, more manageable areas for discussion. The second is to identify places that have a consistency of materials, spatial qualities, visual connections, and/or historical development that should be considered as units when describing an approach to future management. The character areas described below are used to organize treatment recommendations later in this chapter.

The character areas identified for the campus include (figure 5-1):

West Campus
- DAAP Complex
- Engineering Complex
- Campus Green, which includes Sigma Sigma Commons
- Jefferson Avenue Housing
- Dubney-French Complex
- MainStreet
- McMicken Commons
- Clifton Arc
- CCM Complex
- Athletic Complex
- Calhoun Streetscape

East Campus
- University Commons
- Eden Quad

Observatory
- The Observatory
Description of the Character Areas

DAAP Complex
The DAAP Complex is the series of buildings that make up the university’s College of Design, Architecture, Art, and Planning: Alms, DAAP Addition, Wolfson, and the Aronoff Center. The character area includes the open space that wraps around the complex, including the Hargreaves-designed DAAP landscape that features sculptural landforms, turf grass, and carefully placed plantings that play off of remnants of historic Burnet Woods. This landscape forms the northwestern corner of the campus. A sandstone identity sign stands on the knoll overlooking the major intersection of Martin Luther King Drive and Calhoun Avenue.

Engineering Complex
This large character area includes the various buildings and features that relate to the study of engineering at UC: the Geology/Physics Building, Braunstein Hall, Old Chemistry Building, Swift Hall, Baldwin Hall, Rhodes Hall, Engineering Research Center, and Rieveschl Hall, as well as related and proximate buildings and structures such as Crosley Tower, Langsam Library, Woodside Drive Garage, and the Clifton Court Garage. This cluster of buildings is sited on the ridgeline that extends northeast from the academic ridge that was first developed by the university along Clifton Avenue. The buildings in this character area are generally sited around central open spaces. Three of these are signature landscapes that are a focus of this study: the Zimmer Roof Garden, Library Square, and the Herman Schneider Quad.

Campus Green
The Campus Green landscape occupies much of the northeastern portion of the West Campus, extending across six acres of land reclaimed from a former surface parking lot. The central open space features two complementary pedestrian walk systems, the “braided walk” that recalls the meandering flow of a stream corridor and is edged by fountains and tightly-planted groupings of bald cypress and hornbeam trees, and a series of orthogonal and angled walks that lead to perimeter buildings, road crossings, and small seating areas. Turf panels, ornamental trees and shrubs, an earthen mound, and a small arboretum also enliven this large greensward. Buildings loosely edge the central open space, including the Campus Green Drive Garage, Lindner Hall, and the Myers Alumni Center, as well as the dormitories of the Jefferson Avenue Housing area, and the Engineering Research Center. This character area includes a campus entrance at Campus Green Drive marked by a sandstone identity sign and pylons.

Jefferson Avenue Housing
This area includes the three distinct housing complexes that line Jefferson Avenue: Scioto and Morgens Halls, Turner and Schneider Halls, and Daniels Hall and Sander Dining. It does not include any signature landscapes. This character area forms the northeast corner of West Campus and features a challenging pedestrian crossing of Martin Luther King Drive, the primary connection between East and West Campuses. Scioto and Morgens Halls are two surviving buildings of a triad that once edged the open-air parking lot now occupied by Campus Green. A multi-level parking garage is located east of these tall residential buildings. South of this cluster, the campus entrance at West University
Avenue is marked by sandstone pylons and a campus identity sign. Schneider and Turner Halls form a geometric composition of straight and angled lines of buildings and interconnected spaces adjacent to West University Avenue. The placement of the buildings and walks, in conjunction with landform and plantings, form a series of small outdoor spaces. Further south, Daniels Hall and Sander Dining Hall are, older buildings set within more static environments of grass, shrubs, trees, and walks.

Dabney-French Complex
Dabney and French Halls form the eastern edge the Jefferson Avenue Housing area. These two buildings have been modified from their original residential uses to accommodate administrative and classroom needs. They frame Commons Way across from Schneider and Turner Halls, and French Hall forms a portion of the backdrop for Sigma Sigma Commons. There are no signature landscapes included within this character area.

MainStreet
MainStreet extends from University Plaza to Woodside Drive at the Engineering Research Center. It also includes the Steger Student Life Center, CR Residence Hall, and residence halls above the Campus Recreation Center, and is edged by Nippert Stadium and Rhodes Hall. The area follows the curvilinear route of this pedestrian passage through the central portion of the campus. MainStreet has a unique identity comprised of design features and materials such as an exclusive paver, consistent signage and site furnishings, and a vocabulary of steps and seatwalls that allow for informal gathering. This area includes two signature landscapes of interest to this study: MainStreet and the Mews, which provides a quiet, positive pedestrian corridor behind an active, meandering MainStreet.

McMicken Commons
This area is characterized by the central open space that unifies a collection of perimeter buildings with a wide range of architectural expressions, including McMicken Hall, University Pavilion, Braunstein Hall, and the Tangeman University Center. McMickens Commons, the university’s first Hargreaves-designed signature landscape, edges MainStreet to the east and Clifton Arc to the west. The open space features extensive lawn, concrete walks, granite seat walls, and shade tree plantings.

Clifton Arc
This area forms much of the western margin of West Campus. It is bordered to the west by Clifton Avenue and by a series of campus buildings – Taft Hall, Blegen Hall, the Teachers College complex, Van Wormer Hall, McMicken Hall, and Wilson Auditorium – that occupy the narrow ridge that was the focus of early campus development. Clifton Arc is characterized by a rectangular greensward of open space that slopes from east to west, and is cut by the curving form of McMicken Circle, one of the campus entrance drives. Many of the buildings are older, and complemented by the pastoral setting of the greensward, which includes lawn and ornamental tree and shrub plantings.
CCM Complex
This character area includes the assemblage of arts buildings — Mary Emery Hall, Corbett Auditorium, Theater Production, Patricia Corbett Theater, and Corbett Pavilion — and associated buildings such as the Dieterle Vocal Arts Center, Memorial Hall, and the CCM garage entrance that edge a central paved plaza. The area, which is often referred to as a village, is unified by the brick paving of Olin Partnership-designed CCM Plaza, the only signature landscape within this character area, and by walks and a courtyard garden along the Galleria. Dramatic elements, such as Figura Prima, a sculpture by Polish artist Magdalena Abakanowicz, and a circular arrangement of steel bollards that reinforce the concentric bands of paving and plantings within the plaza, contribute to a lively and dynamic urban environment.

Athletic Complex
This area encompasses the majority of the athletic facilities associated with the University of Cincinnati: Gettler Stadium, Marge Schott Stadium, the Varsity Village Tennis Center, and Nippert Stadium, as well as the indoor facilities associated with the Richard E. Lindner Center, Fifth Third Arena/Shoemaker Center, Armory Fieldhouse, and the Campus Recreation Center complex. Because of the proposal to develop a soccer field on the land east of Marge Schott Stadium, this land has also been included within the Athletic Complex. Most of the features located within the area are relatively new and convey a clean, crisp character, and include cutting-edge design features associated with the individual sports facilities. Older facilities are also present, including the Armory Fieldhouse and Fifth Third Arena/Shoemaker Center.

Calhoun Streetscape
This area includes the series of buildings that edge Calhoun Street along the southern margin of West Campus: the University YMCA Building, Siddall Hall, Calhoun Hall, Market Pointe at Siddall, University Park Apartments, Calhoun Street Garage, Corry Boulevard Garage, and Edwards Center. Although the buildings date from different eras and maintain distinctive characters, the area is tied together through its location along a prominent ridgeline.

University Commons
Two signature landscapes are associated with East Campus: University Commons and Eden Quadrangle. At the time that this Campus Heritage Plan was prepared, Eden Quadrangle remained under construction. University Commons, designed by Hargreaves and Associates, provides the primary open space for this campus, which houses the university’s medical school and several administrative facilities. The commons is framed by Martin Luther King Drive to the south, the Vontz Center for Molecular Studies to the east, the Kingsgate Conference Center and University Hall to the north, and Proctor Hall to west. The central open space includes a diverse array of landscape features such as a fountain, the sculpture “Belief” by artist Terry Allen, two earthen mounds, undulating berms, and a variety of seating areas. North of University Hall, another campus entrance is marked by sandstone pylons and a university identity sign.
The Observatory
The Cincinnati Observatory Center is located near the intersection of Observatory Place and Avery Lane east of the primary university campus. The character area features two observatory buildings, which sit atop a broad knoll characterized primarily by turf grass. The open area that surrounds the Observatory is edged by deciduous woodland and topography that drops away more steeply. The Observatory landscape is pastoral, marked by turf lawn dotted with ornamental and shade trees. Landscape features include an access drive with a circular turnaround, parking area, walkway system, outdoor seating plaza, etched stone and concrete plaques and pylons, site lighting, and a historical marker.

Treatment of Landscape
This section offers a framework for considering, evaluating, and managing the mature and signature landscapes of the University of Cincinnati campus. Issues presented include a recommended approach to maintaining the campus landscape and the particular challenges the university faces in doing so. Additionally, this section includes some of the guiding principles to be considered in making site-specific recommendations for future management and, in some cases, change. For individual landscapes, this treatment section identifies aspects of the various landscapes that may be recognized as significant to the university’s or our nation’s heritage, as well as factors that threaten their survival.

Recommended Treatment Approach
During the past sixteen years of Master Plan implementation, the university has experienced a transformation of nearly 50 percent of its campus with a commitment of over $2 billion, the journey has produced a cohesive assembly of new and renovated buildings, recreation facilities, improved residential environments, athletic and performance venues, and sculpted landscapes and plazas.

Given the enormity of the university’s recent undertaking, the community will need time to assess and reflect upon the success and utility of their new campus environment. There will likely be a period of growing pains and adjustments as students, faculty, administrators, and alumni take stock of the campus and identify specific issues that may need to be addressed in the future. The overarching concept for appropriately managing the signature and historic landscapes of the University of Cincinnati campus is to maintain a flexible approach to treatment, preserving the design concept and spatial intent of each landscape while permitting limited adaptations that will meet the university’s changing needs. Such adaptations should only be undertaken within carefully established parameters aimed at protecting inherent design values. This concept arises from the knowledge that, although the campuses have attained unique and recognizable characters and have earned international acclaim, they remain “living” entities that must constantly evolve to meet the current and future needs of students, faculty, staff, and visitors. Many of the following recommendations address identified deficiencies and concerns regarding the landscapes’ usefulness and sustainability without altering the significance of the existing designs.
The primary treatment concerns for the University of Cincinnati campus landscape are:

- retention of and respect for character-defining spatial patterns and building relationships;
- retention of and respect for the dynamic, fluid, and connective quality of the central green spaces and other focal points of school and building complexes;
- retention and enhancement of views to the adjacent Burnet Woods and neighborhoods; and
- assurance that new features are visually compatible with the existing character of the landscape, and that the design of new open spaces carefully considers the relationship to the broader intent of the master plan as well as internal connections to adjacent buildings and spaces. The existing spatial patterns, derived from the placement of buildings, roads, paths, force fields, open spaces, vegetation, and topography, have created the physical expression of the campus as it exists today.

A Particular Challenge

Design is influenced by trends, fashions, and styles, and often reflects a particular point in time and space and/or a world view. Among the three design firms represented in the various signature landscapes, Hargreaves Associates stands out for having designed much of the open space as well as the overarching master plan that determined its placement and underlying context. The landscapes Hargreaves established at the University of Cincinnati are highly representative of his international body of work. His style is recognizable, and his landscapes may be referred to as stylized. While Hargreaves himself was likely an important influence in this phenomenon, they are emblematic of a late-20th-century sculptural-design aesthetic upon which George Hargreaves had a strong influence.1

Styles change as our world evolves. The sculptural landforms and mounds of the Hargreaves designs, while recent in their introduction to the campus landscape, reflect a style that is not now in vogue. The issue of style (and its partner, taste) is one of the values considered by the National Register of Historic Places. In fact, the 50-year age consideration for historic designation is expressly intended to remove the issue of stylistic cycles from the evaluation of design ideas and expressions. Only with the passing of time can the question of what is “in,” “out,” and “in” again be taken out of the mix, allowing work to be evaluated with critical perspective.

Another issue that currently raises concerns about the designs is an acknowledgement of the growing need for sustainability. Most of the Hargreaves landscapes on the UC campus benefit from a labor-intensive effort to keep them in a constant state; they are not intended to evolve over time. The energy resources required to maintain these landscapes are considerable. This, in conjunction with dwindling university budgets, is one of the greatest threats to the signature campus landscapes.
Besides the question of popularity, the Hargreaves design style raises concerns about utility, functionality, and comfort, as well as people-friendly design and human scale. These designs have in common both a conceptual strength and a lack of opportunities for shade, scale, and contemplation, universal qualities of public space that are critical to their value and timelessness. In each of the Hargreaves designs, the big idea is readily apparent, impressive in its scope, and awe-inspiring. However, once the design concept is revealed, the challenge is to draw the user back into the space. Three important questions arise from this observation: What are these landscapes missing that would make them more memorable places for the university community? What overlay activities and elements might make them more interesting? How much can these spaces evolve before the important design ideas are lost?

Design is a primary value within the University of Cincinnati campus. The fact that the university has made design a high priority is an important gesture to consider when evaluating existing landscapes and buildings and proposing changes. The Planning + Design + Construction has ensured that the master plan and expressions of the individual spaces recognize that design involves the essential elements of form and space and those principles that control their organization in our built environment... While utilitarian concerns of function and use can be relatively short-lived, and symbolic interpretations can vary from age to age, these primary elements of form and space comprise the timeless and fundamental vocabulary of the designer... The element of form is the primary tool of the designer and it serves to lay out and classify for analysis and discussion basic forms and organizations of space and their generic transformations in a typological manner. It is ultimately the province of the individual designer to select, test, and manipulate these elements into coherent, meaningful, and useful organizations of space, structure, and enclosure.

Architecture is normally conceived (designed) and realized (built) in response to an existing set of conditions. These conditions may be purely functional in nature, or they may reflect, in varying degrees, social, economic, political, even whimsical or symbolic intentions. In any case, it is assumed that the existing set of conditions — the problem — is less than satisfactory, and that a new set of conditions — a solution — would be desirable. The act of creating architecture, then is a problem-solving or design process.

Fundamentally, the physical manifestations of architecture must accommodate human activity. The arrangement and organization of the elements of form and space will determine how architecture might promote endeavors, elicit responses, and communicate meaning. These elements of form and space are presented, therefore, not as ends in themselves, but as means to solve a problem in response to conditions of function, purpose, and context.

The master plan, it must be acknowledged, has slowly solved many of the campus design and planning problems identified in the late 1980s. However, the university is currently recognizing that some of the designs for individual spaces and landscapes are not successful on the functional level and that others do not resonate with the university community. It is unclear whether these perceptions can be attributed to the existing landscapes' relative lack of maturity or to a lack of appreciation for the
new on-campus opportunities, given the university’s long-standing history as a commuter college.

Many of these landscape designs have received national and international recognition. After 50 years, these landscapes would likely be considered architecturally significant by the National Register of Historic Places as the work of a recognized master. The future of these landscapes could unfold in either of two ways: they could be acknowledged as prime examples of a particular style, philosophy, or cultural world view representative of the late 20th century, and inspire generations of students and designers; or, they could be lost to neglect due to a lack of appreciation. To support the conservation of these landscapes, this plan attempts to identify their value and importance, but also seeks to enhance their usefulness without denigrating their design value.

Principles to Consider in Developing Treatment Recommendations

Principles taken into consideration in preparing these treatment recommendations include the Master Plan 2000, the university’s Sustainability Landscape Overlay, and the needs of the people who will live and work within any designed space, as espoused by sociologist William Whyte in The Social Life of Small Urban Spaces.

The sections that follow present key elements and reference principles from these different sources. Together, these principles help to guide a holistic understanding of the existing campus, the vision that has provided a blueprint for reaching this stage, and the vision that will likely be needed to successfully guide the campus into the future.

Principles of the Master Plan

The primary goal of the master plan as it evolved between 1988 and the present has been to create an identity for the University of Cincinnati as an international leader in education and research. Some of the master plan’s goals were to make the campus more pedestrian-friendly, make open space the organizing element, enhance connections between these spaces and buildings, and establish spaces that are intellectually and aesthetically challenging. Specifically, the master plan set forth four objectives to be met through the document’s design and philosophy:

Emphasize education and enhance the quality of life. Education can occur through interaction with the physical environment, both its indoor and outdoor places. Education is enhanced through connections between academic disciplines; students should be encouraged to live on campus; the campus should provide an environment for discourse and social interaction; open space should be emphasized as the primary structural element of the campus, it should be made people-friendly in every way, and the scale of all new campus development should enhance the human experience; and outdoor space designs and plantings should create outdoor gathering places of various sizes.

Nurture diversity and promote creativity. As a place, the campus should acknowledge the element of controversy, and the places of the university should nurture intellectual exchange and social interaction among people. The architecture of landscapes and buildings can evoke the
controversy inherent in strong ideas, thus fostering an environment of creativity. Public art should herald freedom of expression, exchange of ideas, and creative conflict; the university’s goals are diverse and should be expressed in the process of physical planning; and campus traditions should be recognized in the planning process.

Create connection, campus identity, and a stronger sense of community. Individual programs and disciplines should have a clear self-identity with a physical heart or central gathering place, which in turn is connected to the larger university fabric. Campus open space should be developed as the primary structural element of the campus environment; it should link existing and proposed buildings, and invite interaction of all kinds. There is a need to create a greater sense of connection and community throughout the university, including better linkages between the East and West campuses and between the campus and its surrounding neighborhoods, community institutions, and business districts. Finally, connections between the university’s history and its future should be articulated and given physical expression, and emerging technologies necessitate the development of a stronger campus identity.

Celebrate creativity, innovation, uniqueness, and technological innovation. The university has a unique physical setting. Topographical variation within the campus is unique and affords many opportunities for exciting spaces. The topography is also a source of potential problems for circulation and building expansion; the age of the university and the depth of its roots should be recognized in the physical planning effort; the campus is a 12-month, 24-hour campus.

Principles of the University’s Sustainability Landscape Overlay

The university is currently working to make its campus more sustainable. Planning + Design + Construction has prepared a set of draft guidelines for landscape sustainability that provide suggestions for limiting the use of fossil fuel and the application of fertilizer, pesticides, and other noxious chemicals, conserving water, and managing invasive plant species.

The University of Cincinnati’s draft “Sustainability: Our Common Future; Landscape Overlay” presents a number of laudable goals for managing and maintaining the campus landscape. The goals, objectives, and practices of sustainable design and historic preservation are often compatible and synergistic. Therefore, a critical component of this study assesses the sustainability of the existing signature landscapes. For example, high maintenance costs are anathema to sustainability if they cannot be supported and pose a threat to the viability of landscapes over time.

Specifically, in recognizing its environmental leadership role, the university seeks to incorporate the concept of sustainability into its academic and research program for the design, operation, and maintenance of its buildings and landscapes; while maintaining safety and preserving comfort. The university recognizes that sustainability is a multi-disciplinary, holistic concept that seeks to achieve harmony between human activities and natural systems by efficiently using resources and preserving them for future generations.
The specific tools identified for meeting the sustainability objectives include:

- Encourage conservation of the ecosystem through:
 Use of regionally specific community models
 Increased (though not exclusive) use of native plants, which are adapted to the climatological conditions of the region
 Sound management of aggressive, invasive exotic plants
 During new construction, minimal site disturbance and preferential reuse (if possible) of existing plant material
 Careful selection, siting, and proper installation of new plant material, including proper aftercare, to reduce such problems as transplant shock, long-term plant stress, and mortality

- Keep high-maintenance lawn areas at a minimum, thereby reducing maintenance requirements and costs associated with mowing, raking, fertilizing, irrigating, aerating, soil amending, and pesticide application. Reduction of total lawn area will also reduce maintenance costs.

- Conserve water by reducing surface and subsurface run-off through preservation and use of vegetation, and through water detention and retention areas; reduce storm drains and diversion of water off-site; reduce impervious paving surfaces and increase porous surfaces.

- Employ preferential use of local materials (pavers, concrete, wood, mulch, plant materials, etc.). Encourage utilization of renewable and recyclable materials.

- Identify the importance of sustainability in the living process, and its contribution to the creation of “the sense of place.”

The plan recommends that the university continue to search for better, more energy-efficient lights to be used in landscape lighting.

Finally, “understanding the amount of energy (fossil fuel) being used, and constantly seeking viable alternatives to minimize their consumption is the first step to reducing maintenance costs.” The university can help reduce energy costs by planting more trees, which clean the air by absorbing carbon dioxide and releasing oxygen, save energy consumption for heating and cooling, reduce air temperatures, break winter chilling winds, and using certain types of ground covers such as water-thrifty grasses (buffalo grass, fescue) which will reduce the use of fuel, water, time required for mowing and watering.
Meeting the Needs of Community: William Whyte’s Sociological Principles of How People Enjoy Urban Spaces

The principles that follow are based on the field observations of sociologist William Whyte in New York City in the 1970s and documented in the seminal work *The Social Life of Small Urban Spaces*. Whyte studied the way people gather in urban environments and what features contribute to a human sense of well-being, comfort, and social interaction. His observations are relevant to the university as an urban campus, in that most campuses function like small cities. Whyte identifies the conditions and landscape features that lead people to gather and interact. These principles offer clues as to how landscapes at the University of Cincinnati might be carefully adapted to enhance their integration into the university community:

- People attract people.
- People like to watch other people from a safe and comfortable location.
- People like to stand near objects that afford a sense of human scale and protection.
- People like well-defined places.
- People like places with a view or prospect.
- People like steps and sittable space with socially comfortable seats and a variety of choices.
- People seek comfort, like sun and protection from the wind during cold periods and shade during hot periods; warmth is as important as sunlight.
- People like to be near flow points, particularly heavily traveled circulation routes.
- People do not like to stand in the center of open spaces.
- The sense of enclosure of a space, not its size or shape, is critical.
- Trees are one of the best elements to provide social and physical comfort and ease within a space. They provide comfort, protection, and a satisfying sense of enclosure. They provide human scale.
- Water is usually an attractive element.
- Art and music and recreational activity are all draws.
- Visual accessibility is important to afford a sense of safety and security.
- The best places are comfortable sitting spaces with a view of passersby and trees for a canopy.
- Diffusion of activity is deadening.
Treatment Recommendations

This Campus Heritage Plan links the overall philosophy or approach to solving management issues with treatment recommendations in two categories: general treatment issues and recommendations that address campus-wide topics, and treatment issues and recommendations relating to each of the character areas. The general treatment issues consider some of the big-picture items, such as safety and maintenance, which should be considered a context for the signature and mature landscapes. Although these are the focus of the character area recommendations, other areas of the campus are discussed as well. In most cases, the focus landscapes are introduced with a description of their design intent or role within the campus. The introductory descriptions are followed by a list of the issues considered by the Campus Heritage Plan team. These issues were derived through field investigations and discussions with the university. Specific recommendations to address the issues follow.

The recommendations generally consider and address the three sets of principles documented in the preceding three sections of this chapter. In each case, the goal is to respect and adhere to the master plan principles where possible, to incorporate sustainability when appropriate, and to identify and rectify the functional deficiencies that diminish the success of some of the campus landscapes by considering the needs of community and the individuals who will be using them.
General Treatment Issues and Recommendations

ADA Accessibility

Issues and Considerations
There are 70-foot elevation changes across West Campus alone, making the University of Cincinnati site a great challenge to ADA accessibility. The university has done an extraordinary job developing an accessible route through the entire campus.

Recommendations
Continue to integrate ADA-accessible walks into design solutions beginning early in design. Avoid shoehorning incompatible ADA-accessible walks and ramps into historic, signature, and future campus landscapes.

Design Standards

Issues and Considerations
The university has established a set of design and product standards for site furnishings, lighting, kiosks, and tree grates to ensure that fixtures are consistently used throughout the campus, or within individual districts for which a unified appearance is desirable. The design standards are also intended to support wayfinding needs. Many campus landscape site furnishings, plantings, and signs feature the school colors, red and black.

Recommendations
To promote consistency and hierarchy of materials, continue to employ a standardized approach to the selection and design of site furnishings and lighting. Consider the design intent of landscape places as well as sustainability in the development of university design standards. Continue to consider integrating the school’s colors into these features, but avoid overusing the colors to the degree that the practice becomes banal and predictable.

Evaluate and select a lighting standard that reduces energy use and light pollution.

Materials

Issues and Considerations
The university has adopted granite as a sustainable landscape material because of its durability and life-cycle cost.

Recommendations
Continue to select materials using the criteria of durability, life-cycle cost, and sustainability for long-term performance of landscape features.

Gateways

Issues and Considerations
Sandstone columns have been repeatedly nicked by mowers, and the stone damaged.

Recommendations
Continue to install paved areas below the stones to prevent mowers and string trimmers from coming into contact with the stones.
Consider replacing the stones that are badly damaged. Briar Hill sandstone is still available. Given the slender profile and the ground contact of the existing stones, replacement is likely the best option. Repairing the stones through patching is a possibility, but the available materials (with the exception of Conproco products) do not hold up well under ground-contact conditions.

Chapter 5 - 18
Environmental Graphics and Signage

Issues and Considerations

The campus generally exhibits a cohesive approach to design and application. This is likely the result of an attentive, thorough, and highly qualified staff. These professionals continually attend to the needs of campus design while also establishing overarching policies and initiating projects that address those needs and policies.

The university’s standardization of site furnishings, lighting, kiosks, and tree grates is highly successful.

Recommendations

Continue to support the Office of the University Architect in establishing and maintaining high design standards and implementing a well-founded, thoughtfully executed, and standardized design approach.

Connectivity

Issues and Considerations

Some students do not agree that connectivity is working as well as the master plan seems to suggest. What design considerations would address this issue while avoiding interference with signature landscapes?

Some areas of the campus have not been updated because of a lack of direction provided in the master plan.

Recommendations

Work with a student committee representing different academic programs across the campus to determine which areas, if any, remain difficult to navigate.

Identify any potential connections that might enhance campus circulation, and then engage a designer to develop proposals for new connection routes that are consistent with the master plan’s overarching goals and approach.

Art on Campus

Issues and Considerations

Outdoor exhibits have done much to enhance spaces. Art on campus is exciting and exhilarating for the community. The placement of art and sculpture is an important part of campus design. How should the university choose, site, and place artwork as part of future designs?

Recommendations

Continue to engage an art-on-campus committee that is responsible for placing art and sculpture. Ensure that the committee’s work is coordinated with that of the Office of the University Architect.

Consider the design intent of all spaces where new art installations are proposed, and evaluate the work within that context. Coordinate the work of the committee with the work of any designer hired to develop landscape architectural plans for new spaces at the beginning of the design process to ensure that the proposed siting of a sculpture or other piece of art is consistent with design intent and space configuration.

Include a reasonable allowance for the commissioning and maintenance of public art in the planning and budgeting of all significant landscape and building projects.
General Treatment Issues (continued)

Maintenance

Issues and Considerations

The steep slopes of the Hargreaves-designed landforms are difficult to maintain; mowing is challenging in places for the crew, the mowers cause rutting of the soil, and the mowing is not sustainable. Keeping the grass healthy requires an expensive input of topsoil, seed or sod, and fertilizers.

Aeration is an important maintenance consideration for all the lawn areas. This treatment is also expensive, and the lawn areas are vast.

Irrigation is part of all new projects. Irrigation heads are difficult to maintain. They are damaged by vandalism and by maintenance vehicles driving off paved roads and walks. Irrigation heads are located just off of walks in same areas where they drive. Contaminants can get into the heads and keep them from closing properly. There are 46 separate irrigation systems to maintain.

Since 1998, staffing has been reduced because of funding cuts, although the area to be maintained has increased.

The University of Cincinnati is generally a “high-maintenance” campus.

The university already follows a program of integrated pest management.

The current trend toward perennial gardens will increase the need for maintenance, as these gardens require regular deadheading, mulching, and dividing. Training is not a problem, as crew members are well-trained and versatile, but staffing levels are insufficient within the current funding situation.

There was once a nursery associated with maintenance. There is currently no interest in reestablishing this activity.

Compost is a problem. There is currently no location available to compost waste.

Mulch is carefully applied, balancing the benefits with the overuse that is apparent in many locations. There are no “volcanoes” of mulch on campus. Currently, mulch is applied once each year, again because of funding limitations. Should the maintenance department change to a spring mulching schedule?

Chapter 5 - 20
Maintenance (continued)

Recommendations

Experiment with sustainable alternatives to high-maintenance lawn in some areas of the campus. Consider species that require less water, fertilizer, and pesticide applications, as this will reduce irrigation requirements and costly chemical applications.

Consider alternatives for the 2:1 slopes of the Hargreaves-designed berms to lessen the difficulty involved in maintaining these features.

Evaluate alternative locations for a new maintenance facility. Locations must be proximate to campus and must accommodate the desired program of the maintenance department. Possible programmatic needs include a composting facility, a propagation facility, stockpiling and storage space, office space, and equipment storage space. The space should be able to be secured. Investigate the likelihood that a new facility might be sited along Calhoun Street behind the campus.

Consider a variety of means for addressing maintenance budget shortfalls. For example, consider establishing a donation fund to rehabilitate the plantings associated with Clifton Arc. Engage a friends group in the fundraising and selection of appropriate species for plantings.

Continue reinforcing the need for crew members to mow and remove snow in a way that does not damage pavement or landscape features, such as stone pylons and arboretum tags.

Vegetation

Issues and Considerations

There is a general lack of evergreen trees on campus.

Many of the newer landscapes are large, open spaces with few canopy trees. Students are not gravitating to these spaces. A lack of trees, programmed uses, activity, and spatial definition, such as buildings with doors that open onto the spaces, are diminishing the role of these spaces in campus life.

Recommendations

Consider enhancing the large, open landscape spaces individually to determine any spatial, programmatic, or perimeter gestures that might help animate them and invite the university community to come in.

Consider the Clifton Arc landscape an opportunity for planting more evergreens.
As the Getty Foundation grant application states, “The DAAP Landscape complements and completes the Aronoff Center’s unifying effect upon the DAAP complex. Meandering landforms along an existing hill interact with the DAAP complex and provide continuity to the southwestern portion of Burnet Woods.” Designed by George Hargreaves, the DAAP landscape was presented with an award of merit by the American Society of Landscape Architects in its 1998 international professional awards program. It was cited for its success in complementing the “originality of Eisenman’s building design, ‘with its pastel-tinted stucco exterior, off-kilter windows, and hardly a right angle in sight.’…Hargreaves responded with a series of grass-covered berms that seem to emanate from the structure itself and ripple down the hillside. The undulating landforms create mysterious shapes and shadows.”

The landscape responds to the Center’s labyrinthine structure with a series of grass-covered berms that seem to emanate from the structure itself and then proceed down the hillside in serpentine ripples. Grassy mounds and pyramidal landforms emerge from the lawn areas... Another aspect of the project was the reintroduction of native trees consistent with those found in a park adjacent to the Center. Although efforts were made to protect existing mature specimens during the construction phase of the building, several were lost, prompting the university to adopt guidelines formulated by Hargreaves Associates for safeguarding trees during future construction projects. The landscape architects also helped the university develop maintenance guidelines and select new equipment for mowing the two-to-one slopes of the berms.”

For the most part, the DAAP landscape is designed to be viewed as a foil or foreground to the Aronoff Center. There appears to have been an intent to establish a variety of outdoor spaces that students can use in displaying and interacting with projects. The success of this intent is unclear. With all of the Hargreaves-designed landscapes, the success of the sculptural qualities of the landscape relies on a visitor’s ability to read them. This suggests that maintaining the sculptural elements is essential to perpetuating the design intent.
Aronoff Center for Design and Art (DAAP) Landscape

Issues and Considerations

The Hargreaves design allows for the coexistence of historic older trees surviving from Burnet Woods and a new grid of trees planted in association with the campus identity sign. What happens when older trees begin to decline?

Erosion is occurring along some of the steeper slopes.

The berms are a high-maintenance landscape feature. Mowing the berms is challenging and can lead to deterioration of the sculptural forms.

Opinions differ regarding the visual and sensory impact of the steep topography and serpentine berms associated with this prominent campus gateway at the intersection of Martin Luther King Drive and Clifton Avenue.

As a foil, the landscape is generally successful, but may lack an inviting quality that might be considered desirable for this key public façade of the campus.

The gesture of retaining evidence of Burnet Woods within the landscape is important and should be taken into consideration as part of any future proposed change.

Recommendations

As they decline, replace older trees on the hill that are a vestige of Burnet Woods. Plant new trees in informal groupings to ensure that the design remains consistent with the existing patterns.

Recommendations (continued)

Evaluate the cause of existing erosion. Consider whether it arises from mountain-biking use, slopes that are too steep to retain grass, or shade that is preventing the existing turf grass from thriving. Repair erosion and work to correct the underlying cause. For example, establish structures that prevent bicycles from accessing the eroded slopes, diminish the severity of the slopes using the least fill necessary, or replace the existing grass with a more shade-tolerant species.

Consider alternatives for enhancing the streetscape along this edge of the campus, such as a regular planting of small, ornamental trees that will not obscure the reading of the landscape, but will provide a welcoming gesture to the community.

Consider potential locations for replacing lawn with a more sustainable groundcover planting; for example, warm season grasses and meadow forbs that require limited mowing could be planted in the interior façade of the DAAP complex.

Identify designated sites for art installations.
As described in the Getty Foundation grant application, Herman Schneider Quad "is the greenspace that ties together the buildings of the Engineering Quadrangle. In recent years, of necessity, the Quad has been home to temporary pavilions that housed relocated functions during the lengthy MainStreet construction period. Work [was subsequently conducted] to restore trees, plantings, and grass for the enjoyment of pedestrians."

A George Hargreaves design for a refurbished quad was not executed. It proposed to extend pedestrian paths from McMicken Commons and to plant trees, both in formal rows of ornamental trees to accentuate the visual focus on Baldwin Hall and in loose “drifts” of shade trees as a counterpoint to this formality and an extension of the landscape on the academic ridge. Benches on either side were planned to offer views to the center of the space.

The current design does not appear to have successfully encouraged student use of the landscape. Many of the principles in William Whyte’s *The Social Life of Small Urban Spaces* (previously listed in this chapter) could be considered for their applicability to the life and activity not now evident within the quad.
Herman Schneider Quadrangle

Issues and Considerations

Herman Schneider Quad lacks canopy and shade trees that would render the space more appealing. Additional benches would also provide an opportunity for people to gather and help activate the space.

Recommendations

Evaluate the potential to enhance the program and elements of the Herman Schneider Quad to encourage social interaction while respecting the design intent of the space. Use William Whyte’s principles to determine the elements that will support this goal. In particular, facilitate direct connections between building interiors and the landscape. Provide warm and inviting intermediate spaces with elements that convey a sense of human scale between interiors and larger exterior spaces that allow people to pause and gather. This will help establish a critical mass that will encourage movement into the larger landscape. Provide shade and shelter along the margins of important thoroughfares, and provide flexible seating opportunities that can be used to take advantage of sun and shade.

Recommendations (continued)

Consider planting additional deciduous canopy trees with good fall color within the landscape. Use paths and force fields as the design organizer for the plantings. Consider adding trees to the outer perimeter of existing pathways to allow the central space to remain open. Consider including additional trees along the force-field walk leading to the quad from the McMicken Commons area to emphasize this pedestrian connection. (figure 5-1)

Consider replacing lawn panels along the margins of the space with more sustainable plantings.

The photographs above show examples of historical plantings in the quad.

On the following page various alternatives for phased tree plantings are explored.
Figure 5.1: Plantings could articulate the paths along Hargreaves “force fields”.
Engineering Complex Character Area
Signature Landscapes:

Library Square

As described in the Getty Foundation grant application, Library Square “provides the pedestrian connection between the Engineering Research Center, Langsam Library, and Zimmer Auditorium. A nautilus form in the pavement represents the university’s unending pursuit of knowledge.” Like the DAAP landscape, Library Square was honored by the American Society of Landscape Architects in 1998 as part of their annual international professional awards program. Library Square received a merit award and was lauded by Landscape Architecture magazine for its “dynamic quality and humor,” and “the nautilus design of Library Square (in front of Langsam), [and] the contrast to its organic form created by a nearby grid of stairs.” The design was further described in the magazine:

Some would argue that the greatest educational moments take place beyond the halls of academe, on the greens and squares that comprise the campus. This is where the rallies, protests, and public debate have always taken place, a tradition since the time of Socrates and Hellenic Greece. For a library square on the University of Cincinnati campus, Hargreaves Associates took this idea seriously. Weight restrictions for an underground parking garage beneath the site prohibited the planting of trees. In response, the landscape architects created a central plaza in the shape of a nautilus, a form of Fibonacci spirals that ever since ancient times has been thought to express the perfect symmetry of nature. Alternating bands of hardscape radiate from a central stone etched with a quote from Oliver Wendell Holmes. To compensate for the lack of verticality that would have been provided by trees, a grid of slender neon triangles, each about five feet tall, was constructed at the “mouth” of the nautilus. From above the grid contrasts with the organic form of the nautilus, while at ground level it breaks up the monotony of the space. A complex stairway designed in conjunction with the architect provides an innovative linkage across a grade change.”
Library Square (continued)

Issues and Considerations
The engineering requirements of this rooftop landscape leave only small areas available for planting.

Recommendations
Retain and maintain this successful, internationally recognized landscape. Respect the design intent of this space when changes are proposed. Insofar as possible, ensure that the margins of the nautilus continue to be edged by shade and ornamental trees, to provide an element of human scale within this space.

Repair in-ground step lighting.
Re-grout deteriorating paver joints.
Program the area to activate it.
Add new lamps to the light features.
Add new hardware where missing.

Engineering Complex Character Area
Signature Landscapes:

Zimmer Roof Garden

The Zimmer Roof Garden is described in the Getty Foundation grant application as having the potential “to improve the plaza area above Zimmer Hall. A pedestal paver walkway system will be installed, and new skylights in the Plaza will light the corridors of Zimmer. Grass, trees, and perennial beds complete the plaza. The project also includes restoration of a stairway leading from Library Square to Zimmer Plaza.” Installation of Kenneth Snelson’s “Forest Devil” sculpture is planned.

George Hargreaves designed the Zimmer Roof Garden. In Master Plan 2000, he described the design intent of the plaza as follows:

Next to Library Square, Zimmer Plaza is the northernmost element in the series of open spaces which make up the Academic Ridge. This is to be reinforced by incorporating the Academic Ridge “frame” lighting fixture. Zimmer Plaza is to continue to serve as a major connector for pedestrian traffic from the Academic Ridge to Campus Green, and to reflect the major pedestrian traffic patterns which cross the roofscape. The open space is to serve as a campus oasis, a place for quiet passive recreation. To create this oasis-like setting, it is to be designed as a rich environment that includes a variety of both flowering and non-flowering plant materials to define spaces for sitting and studying within the garden setting. Formal rows of trees are to be incorporated to provide shade, as allowed by the structure of the Zimmer Auditorium below, and to reflect the Baldwin [Herman Schneider] Quad force field, which is the basis for the orientation of the building. Zimmer Plaza is to be designated one of the campus outdoor sculpture gardens. Art in this sculpture garden is to be integrated into the design of the space and should focus on the natural environmental phenomena of the space — light, wind, and sound.
Zimmer Roof Garden (continued)

Issues and Considerations
A lack of maintenance staff or proper training could spell the end of the perennial beds within this landscape, although this is not presently a concern.

Recommendations
Retain and maintain this successful landscape design. Respect the design intent of this space when faced with any proposed change.

Consider soliciting the assistance of a friends group of students and community members to provide maintenance support for this garden landscape.
The Campus Green landscape was described in the Getty Foundation grant application as “The largest open space in UC’s Master Plan, Campus Green replaced six acres of parking and pavement with formal gardens, an international arboretum, waterscaping, braided walkways, and places to sit. Campus Green is the primary pedestrian route through campus, and perhaps the single most defining element of UC’s transformation from a commuter to a pedestrian university.”

The design intent is described in the Master Plan 2000 as follows:

Campus Green and Sigma Sigma Commons together are the major open space for the northeastern quadrant of West Campus. Campus Green has replaced a vast parking lot with a landscape that satisfies a proven need for open space in this area, and has created a new destination and social meeting places at the core of the campus. The density of the residential population in adjacent dormitories, both existing and proposed, supports the addition of this new green space, which now dominates the district. The green is the campus’s primary open space window from the northern edge of West Campus and gives the university greater presence on Martin Luther King Drive. Both the force-field geometries, and the irregular geometries of the braid and the arboretum along its length are overlaid onto the site, asserting the significance of the green as a gathering place “intersection” for the entire campus. As a nexus, both visual and pedestrian connections are created, linking the green and East Campus, and along its eastern edge a pedestrian link is made south to Scioto Street, University College, Jefferson Quad, and the recreation fields. Bordered by the new Recreation Center, residential structures, and major academic buildings, Campus Green is where students, faculty, administrators, and alumni can find generous outdoor space for passive recreational use and respite from classes, as well as more intimately scaled spaces for discussion and study.

While the Hargreaves plan was intended to provide a central forum for university community activity, its success in this capacity is an open question. The Campus Green landscape is enormous, expansive, and open, with few sheltered areas. Although the space works well for circulation, it is not adequately contained, and there are few direct connections to buildings that would help to activate it. Like Herman Schneider Quad, the Campus Green landscape would benefit from the application of William Whyte’s design and programmatic principles as espoused in The Social Life of Small Urban Spaces to make it more attractive to students and help fulfill its intended purpose.
Issues and Considerations

The ball-in-basket light fixtures cast light upwards, and therefore fall short of sustainability guidelines.

The fountains are difficult and expensive to maintain.

The steep slopes of the berm landforms are challenging to maintain.

The extensive area of lawn requires laborious and expensive maintenance.

Triangular spaces and joints are difficult to maintain. The Campus Green landscape includes numerous triangular junctures.

Access to the apex of the cone-shaped mound along Martin Luther King Drive was not provided in the Hargreaves design, but visitors have established a footpath to the top. It is human nature to want to gain a perspective by climbing to the top of a landform such as this, and a route to the top should be provided to replace the erosive and unattractive worn-earth path that is highly visible directly behind a campus identity sign.

Issues and Considerations (continued)

Currently, the arboretum plantings are set in and around sculptural landforms, and small plaques identify the plantings by Latin and common names. There is currently no preferred method for viewing the plantings or the plaques, which limits their educational value.

Recommendations

Select a replacement groundcover or surfacing material to proactively address the loss of designed plant material within the narrow, triangular tips of the planting beds that edge walkways within this landscape.

Provide a pedestrian route to the apex of the Campus Green cone-shaped mound to replace the footpath currently used by visitors. To avoid altering the design intent of this landscape feature, design the route to be as unobtrusive as possible. Universal accessibility should be a consideration, but not a requirement if the design of the route effectively diminishes the design value of the cone (figure 5-3).
The entry mound is a vibrant color in the fall.

The edge of Campus Green has dense evergreen plantings that block views of the campus green from a major pedestrian path. The evergreens could be removed, allowing open views and access.

Campus Green (continued)

Recommendations (continued)

Replace ball-in-basket luminaires with lighting that is consistent with the principles of the light pollution reduction credit of the US Green Building Council’s LEED (Leadership in Energy and Environmental Design) standards. In particular, design new lighting in conformance with the Illuminating Engineering Society of North America’s exterior lighting recommended practices.

Replace groundcover plantings on steeply-sloped landforms that are composed of invasive, non-native plant species. Removal will support sustainability initiatives. Follow the guidance provided by the state of Ohio Department of Natural Resources or the National Park Service in identifying species that are considered to be invasive, non-native plants within this region. For example, euonymus, which is an ornamental groundcover that is being used to protect the Hargreaves berms and slopes from erosion, is also considered by some states and the federal government as an invasive, non-native plant species.

Recommendations (continued)

Consider the margins of the Campus Green open space for new building development, particularly housing. The university needs housing, and the activity generated by residents would render the Campus Green landscape more active.

Consider replacing some areas of grass within Campus Green with a more sustainable groundcover species to reduce the need for fertilizers, irrigation, and mowing while avoiding alteration of the overarching design concept for the space (figure 5-4). In particular, consider adding warm-season grass and meadow perennials to the panel where replacement of evergreen tree plantings is recommended (see below).

Consider enhancing the Campus Green landscape by planting groves or bosques of shade and canopy trees in various locations as an invitation to gather. Consider the margins of the open space, and along heavily traveled circulation routes, which are more desirable for gathering than the center of a large open space. Refer to The Social Life of Small Urban Spaces.
Grass panels could be replaced with more sustainable and easily maintained native ground covers and ornamental grasses.

Campus Green (continued)

Recommendations (continued)

for guidance. Consider carefully the design intent of the landscape in the development of enhancements.

To enhance appreciation of the existing arboretum plantings, consider establishing new paths to provide access along the western margin of the Campus Green space. Design the access routes to be as simple and unobtrusive as possible.

Protect the species identification tags from damage by mowers. Consider alternatives such as establishing a groundcover or paving area around each tag that will preclude the need to mow in close proximity to the tags. Continue to train maintenance personnel to avoid damaging landscape features such as these during mowing.

Consider alternative methods for maintaining the hornbeams that mark the edges of the braided walk. The dense canopies of these trees, unless frequently pruned, are prone to disease. Consider removing every other tree to allow sufficient light and air to reach the centers of the canopies.
Chapter 5

Campus Green Character Area
Signature Landscapes

Sigma Sigma Commons

The Sigma Sigma Commons landscape is described in the Getty Foundation grant application as “three acres of green space bordered by French Hall and the Campus Green. It features a 65-foot light tower and a grassy amphitheater that can seat 3,500 people.”

Sigma Sigma Commons was one of the first signature landscapes established on campus. It was intended to be used for theatrical performances and spontaneous congregation. The landscape is highly sculptural, with clean horizontal lines and planes of turf edged by stone. While its design is theoretically intriguing, it does not attract the type of use for which it was intended.

Issues and Considerations

Although designed as theatrical or performance space, it is not currently used as such. This space has become marginalized or peripheral to campus activities and has never achieved its potential for congregational assembly and performance.

Recommendations

Consider adding a bosque of trees to the upper levels of the Sigma Sigma amphitheater. The trees would afford a sculptural appearance against the backdrop of the building, provide shade and a sense of protection for those trying to use the space, and break the monotonous openness of this area. A bosque of trees would not necessarily detract from the design concept for the space, which is a sculptural use of ground plane and stepped, stone-edged levels. Planting a bosque along the top level would likely enhance this sculptural quality by punctuating it with a vertical element, and would also encourage students to use the space as it was intended.

This Page: Sigma Sigma Commons (Hargreaves).
Sigma Sigma Commons. A bouq of trees planted on the facing plane at top of stairs would retain the formality of the design while also making it a more shaded, inviting gathering space.
This assemblage of buildings, which edges the Campus Green and sits in the shadow of the Engineering Research Center, retains a relatively unique character within the overall campus landscape. The buildings are horizontal in their massing, and human in their scale. The lawns, plantings, and outdoor terraces associated with the buildings are intimate and human in scale as well. There is a large, mature shade tree in front of the complex. This complex provides a counterpoint to the massive scale of much of the rest of campus.

Issues and Considerations

The buildings of this grouping are being considered for removal. Given the university’s enrollment and current character of the campus, there may no longer be a place for smaller-scale buildings like these on the campus.

Recommendations

Consider adaptively reusing these buildings and rehabilitating them in support of conservation. Consider constructing additional buildings in this area that might enhance the spatial quality of Campus Green, which is diminished by a lack of strong edges.
Jefferson Avenue Housing Character Area
Other Landscapes

Morgens and Scioto Halls

Issues and Considerations

This is a very desirable site for developing new housing. Existing housing could be rehabilitated. The location of the third “sister” (Sawyer Hall) that was demolished could be used to develop additional housing. The activity generated by this housing would benefit the Campus Green landscape.

Evergreen trees are planted along diagonal walks cutting across the Campus Green landscape and leading to the broad walk below the two remaining “sister” dormitories. These trees act as a vegetative screen between the housing and the landscape. They also appear to create an unsafe condition by affording opportunities for concealment.

Recommendations

Consider replacing the evergreen plantings with shade or canopy trees that provide a more inviting character for this juncture between the housing facilities and Campus Green.

Consider adding new housing facilities on the site of the demolished Sawyer Hall.

Consider replacing lawn in the panels where the evergreens are removed with a more sustainable planting that might include warm-season grasses and meadow forbs.

Graduate Residences Morgens and Scioto Halls.
Jefferson Avenue Housing Character Area
Other Landscapes

Schneider and Turner Halls

Issues and Considerations
This area has recently been redeveloped as housing.

Recommendations
Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed.

Jefferson Avenue Housing Character Area
Other Landscapes

Sander Dining and Dabney Hall

Issues and Considerations
This area has not been updated as part of the master plan.

Recommendations
Engage a design firm that has successfully developed context-sensitive designs to consider the needs of this area when it is slated for rehabilitation. Ensure that the design is consistent with and respects the intent and goals of the master plan.

Dabney-French Character Area
Other Landscapes

Dabney and French Halls

Issues and Considerations
This area has not been updated as part of the master plan.

Recommendations
Engage a design firm that has successfully developed context-sensitive designs to consider the needs of this area when it is slated for rehabilitation. Ensure that the design is consistent with and respects the intent and goals of the master plan.

Green space between Schneider and Turner Halls.

Plaza area in front of Sander Dining Hall.

Dabney Hall
As noted in the Getty Foundation grant application, “Bearcat Plaza is a triangular open space in the heart of MainStreet, in full view of Nippert Stadium, Tangeman University Center, and the Steger Student Life Center. It is a popular site for informal musical performances, social interaction, intellectual challenge, lunching, and sunbathing.”

Master Plan 2000 describes the design intent for this linear and curvilinear landscape as follows:

This district is defined as an intensively programmed open space and pedestrian circulation corridor that begins at University Plaza, moves through the campus along the route of Campus Drive, and extends east along Daniels Street to Jefferson Hall housing at Jefferson Street. MainStreet is to provide accessible circulation routes that traverse open spaces and move through buildings between the Academic Ridge and Daniels Street. Buildings are to have a contemporary expression and are to adopt a material palette of stone, metal, and glass, distinct from the red brick on campus. Buildings may incorporate brick elements, especially where existing buildings are retained. Buildings are to adopt the massing and layout characteristics of the district in which they are located — the simple force field geometries of the ridge, the curvilinear geometries of the abstracted braid, and the north-south, and ravine geometries used as organizational devices near Jefferson Street.
MainStreet Open Space Design

The open space corridor is to be developed as an urban pedestrian corridor. Open space forms are to be generated from the arcs emanating from Campus Green Braid. Microscale geometries are to be influenced by force field geometries. The landscape material palette, including special paving, granite ‘outcrops,’ unique lighting, and a special graphic and wayfinding system are to be utilized to establish the district character. Existing pedestrian connections are to be retained and new connections along Nippert Stadium and through the MainStreet buildings are to be created. MainStreet is to be graded with continuous accessible sloping arcs connected by switchbacks. Grade changes are to be concentrated in granite outcrops of steps and seatwalls. Outcrops along the Student Life Center are to form elevated terraces overlooking the corridor and allowing activity to spill out of the building. A central plaza is to be a gathering and performance space; shade trees, water features, and movable chairs and tables are to be part of the flexible space. The existing wall at the corner of Nippert Stadium is to be removed to open views from the plaza. Arcs of trees and meandering paths are to make the formal transition from MainStreet to the Campus Green Braid, and a shuttle bus turn-around is to be provided at this area. Landforms are to make the transition from Sigma Sigma Commons to the architectural forms of the Recreation Center. 21

The vision proposed for the Student Life Center in the master plan is worth recalling wherever spaces need activation elsewhere on campus: “The MainStreet façade of the building is to be expressed as a permeable filter, allowing activity to spill out onto covered arcades, porches, and terraces, and create an active building edge down the entire length of MainStreet.” 22
Issues and Considerations

The university has done an outstanding job of using design palettes and materials to unify areas and support wayfinding on the campus. This is particularly true within the MainStreet landscape.

The gaps between the hadite-filled pavers associated with the drip lines of trees have been problematic for maintenance. They are periodically a trip hazard, particularly for people wearing narrow-heeled shoes.

Bearcat Plaza is more successful than Sigma Sigma Commons for its amphitheater-like performance and gathering space. This may be attributable to the intense programming of the surrounding buildings and attendant critical mass of people, as well as the availability of shade, shelter, and variety of seating choices. Heavy use of this area will likely result in the need to repair and replace materials regularly.

Recommendations

Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed.

Evaluate materials to potentially replace the hadite between the pavers associated with street tree plantings.
MainStreet Character Area
Signature Landscapes:

The Mews

The Getty Foundation grant application describes the Mews landscape as follows:

“The Mews is an open-space corridor running between the Steger Student Life Center and Swift, Baldwin, and Rhodes Halls. This terraced space is also a final resting place for a number of architectural relics rescued from UC building demolitions. Landscaped grounds, overlooks, and gathering spaces complete the area.”

The use of the relics provides a reminder of the university’s past.

Issues and Considerations

This space is beautifully conceived and executed. It suffers, however, from its location in a shady tunnel of space.

Recommendations

Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed.

Consider design solutions for providing additional warmth within this space. Lighting is one potential feature that might be added to provide warmth to the space.

Consider means for providing additional connections between adjacent buildings and circulation routes that might promote more active use of this area or serve as an invitation to explore the Mews landscape.
As described in the Getty Foundation grant application, McMicken Commons was “the first open space completed as part of the university’s Master Plan. McMicken Commons has become a major gathering place. The Commons, located in the center of the Uptown Campus West, provides continuity to the MainStreet buildings, courtyards, and plazas.”

Master Plan 2000 distinguishes between McMicken Commons and Lower Commons, but they are treated together within this character area. The plan describes the design intent for Lower Commons as follows:

Building facades are to encourage activity to spill out to exterior plazas and connect to the CCM bridge. The Lower Commons and TUC Plaza are to be a gently sloped area to accommodate multidirectional pedestrian flow and spill-out activity from the bookstore café. A cluster of benches and shade trees is to provide opportunities for sitting. The grade change between University Plaza and the main entrance to TUC is to be articulated with stone outcrops in order to create meeting spots, and is to provide an accessible entry.
McMicken Commons

Issues and Considerations

Along the interior edge of McMicken Hall, there is a brick landing that is raised less than a riser height above the surrounding grade. It presents a potential trip hazard.

Metalwork features in close proximity to the building have a historical character.

This space lacks canopy and shade trees, and has not been as successful as the university hoped in serving as an outdoor gathering place.

Recommendations

Consider planting additional deciduous canopy trees with good fall color within the McMicken Commons landscape, taking into consideration the design intent for the space. Utilize paths and force fields as the design organizer for the new plantings. Consider adding trees to the outer perimeter of existing pathways in groves or bosques that will form a canopy and allow for activity underneath. Maintain the important sight line through the middle of the space (figure 6-6).

Retain the ornate metalwork of tree grates, light poles, and handrails in proximity to McMicken Hall.

Consider removing the kiosk structure near the entrance to McMicken that currently impedes the axial view to Tangeman. Consider an alternative landscape treatment, one that does not deny this axial relationship, to accentuate the entrance.
As with the Baldwin Quad (Schneider Quad), tree plantings in the McMicken Commons could be phased and support the current design and pathways.
Clifton Arc Character Area
Signature Landscapes:

Clifton Arc

Master Plan 2000 describes plans for the Clifton Arc area, most of which appear never to have been implemented. Given the historic nature and appropriate existing character of the Clifton Arc landscape, further development of the recommendations included in Master Plan 2000 for this area is discouraged. The ideas presented in the master plan include:

Clifton Arc is to be reinforced as the major historic open space and threshold to the western edge of the university. A gateway wall is to announce Clifton Arc as the significant symbolic entry point of the campus. The design of the arc is to retain the existing character of the space, while adding elements that punctuate it and align it with the force field geometries. Trees are to be strategically removed and drifts of trees are to be strengthened to allow views through Clifton Arc to the campus, and to encourage use of the space. The existing meandering path is to be replaced with a V'd path which steps up the hill. This path should be sensitive to the relocation of the crossing light and improved walkway from the Stratford Lot. At the edge of the arcing lawn, the drive is to be reduced by one lane and a hedge is to be added to reinforce the form of the curve. 26
Clifton Arc

Issues and Considerations

Clifton Arc is one of only a few true historic landscapes remaining on campus. It serves as the front door to the campus and an appropriate foreground for the older buildings located along Clifton Avenue. Many of the trees may be in decline. The character of the Clifton Arc landscape has changed over the years. One question is whether to perpetuate its current character, or restore an earlier character. Are the individual tree species represented important, or is perpetuation of the picturesque quality sufficient? Do the trees need to be replaced in kind? Are there interesting plants that could be added here to enhance the campus landscape, even though they would be new additions to the Clifton Arc palette? Is the existing landscape based on a planting design, or has it evolved over time? Should the central walk and road corridor be reconsidered in accordance with the unexecuted aspects of the master plan?

The foundation plantings along the front of McMicken Hall are overmature, and some are experiencing dieback. The plantings will need to be either rehabilitated or replaced. Should these efforts respect the existing species and planting design? Should they be reconsidered to address any maintenance problems experienced with the existing planting design?

Recommendations

Retain and maintain the existing picturesque quality of the Clifton Arc landscape. Avoid altering the central walk and road margin in conformance with the master plan, which would introduce an incompatible character into this historic landscape.

Consider retaining and enhancing the qualities of the existing landscape, comprised of grass, trees, and shrubs. Consider replacing trees that are hazardous or at the end of their useful life with species of a similar character, but evaluate the possibility of adding new species for ornamental and educational value.

Consider making the planting of new trees within Clifton Arc a fundraising endeavor.

Consider replacing the existing plantings along the front of McMicken Hall using the original design concept. Evaluate the potential for replacing species and cultivars that can no longer be acquired from nurseries or that have been especially challenging to maintain. Seek alternatives in species and cultivars that will convey a similar character, but whose qualities are more consistent with the university’s maintenance capabilities.

Retain and maintain the historic metalwork of the handrails.
Clifton Arc Character Area

Other Landscapes:

Teachers College and Dyer Hall

Issues and Considerations

This landscape is another historic feature of the campus. It currently conveys a tired appearance and is a good candidate for rehabilitation.

Recommendations

Consider replacing the existing plantings within this courtyard with new plantings that respect the original design, but replace species and cultivars that can no longer be acquired from nurseries or that have been especially challenging to maintain. Seek alternatives in species and cultivars that will convey a similar character, but whose qualities are more consistent with the university’s maintenance capabilities.
CCM Complex Character Area
Signature Landscapes:

CCM Plaza

This Olin Partnership-designed landscape is described in the Getty Foundation grant application as follows: “The entryway to CCM Village is a broad brick quadrangle studded with gray-painted spheres. The plaza showcases an evocative sculpture by Magdalena Abakanowicz. The main entrance opens onto the lobby of Corbett Auditorium.”

Issues and Considerations

Soil subsidence is occurring in the planting beds to the margins of this space.

One of the trees has been lost within the outer ring of the pavement.

Recommendations

Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed.

Replace the tree that has been lost from the outer ring. Given the design intent of the concentric circles that characterize this space, the loss of individual features detracts from the design’s impact.
CCM Complex Character Area
Other Landscapes:

Alumni Courtyard Garden

Issues and Considerations

The Alumni Courtyard Garden is very intimate. This garden, and the walk that extends along the exterior of its perimeter wall, are small gems in the university landscape.

Plantings along the exterior walk need maintenance, and the loading dock and dumpster at the end of the walk should be screened.

Recommendations

Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed. Take particular care in maintaining plantings within these areas.

Screen the loading dock and dumpsters at the end of the walk using evergreen plantings and wood fencing.
Athletic Complex Character Area
Signature Landscapes: None

Corry Boulevard Area

Issues and Considerations
Portions of this character area have not yet been redeveloped on the basis of the master plan. The master plan indicates development of Jefferson Quad that will replace an existing maintenance facility. No alternative location has yet been identified for maintenance.

Recommendations
Engage a design firm that has successfully developed context-sensitive designs to consider the needs of this area when it is slated for rehabilitation. Ensure that the design is consistent with and respects the intent and goals of the master plan.
Identify an appropriate new site for maintenance. Develop this new site to include the full range of programmatic needs identified by the department. Maintenance of the campus landscape is integral to protecting and enhancing the existing signature and historic landscapes.
Bank below Calhoun Street/Corbett Drive

Issues and Considerations
This steeply-sloped area has walks leading to Calhoun Street that are heavily utilized. One of these is an asphalt walk that is failing; the slope is not stable and the walk has had to be repaired in areas where the soil fell away.

A segment of the pedestrian connection in this area is a mulch path. Plantings occupy the sides of the road and walk and the steeply sloped banks below. Some of the plantings may include invasive, non-native plant species.

Recommendations
Engage a design firm to design a solution to the erosion problems experienced along this bank, and strengthen the pedestrian connections between the campus and Calhoun Street.

Remove invasive, non-native plants. Consider engaging a volunteer crew of students and community members to help with this maintenance activity.

YMCA Building

Issues and Considerations
The landscape associated with this historic building needs repair. The walk and retaining-wall segments that provide connections to the side entrances of the building are failing.

Recommendations
Retain this historic building. Rehabilitate the landscape, particularly taking into consideration pedestrian safety.
As described by designer George Hargreaves, “University Commons [is] one in a series of connective open spaces on the Cincinnati campus [that] will provide informal gathering spaces for large and small groups as well as paved classroom areas amidst sloping lawn surfaces and serpentine landforms.”

Issues and Considerations

The mound landform is accessible via a paved walkway. A seatwall is provided at the apex of the mound. However, a dense planting of hornbeam trees blocks the view from the top of the mound, an expected benefit of scaling this sculptural landform.

Recommendations

Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed, and maintain its key character-defining elements of the University Commons design, including the berms, the fountain, the sinuous berms, the paths, and the variety of seating areas.

Provide visual access to the landscape surrounding the mound by limbing up the trees on top enough to at least allow a view from the seatwall (see next page).
The mound on the East Campus with seating at top is densely encircled by tree. Limbing up these trees would allow for people seated there to view the Vontz Center.
East Campus
Signature Landscapes

Eden Quadrangle

This landscape was under construction at the time the Campus Heritage Plan was prepared. The university noted in the Getty Foundation grant application that “Eden Quadrangle is a planned open space that will complement the expanded Medical Sciences Building. It will feature granite seat walls and steps, a large plaza, an outdoor amphitheater, and trees.”

Top photo: The newly completed CARE/Crawley Building is framed on two sides by the Eden Quad Landscape (Hargreaves).
Left photo: View of Kresge Circle and Levine Park which connect to Eden Quad on the west edge.
Right photo: Close up of Eden Quad Landscape (Hargreaves).
Issues and Considerations

The walkway between these buildings is a gateway into East Campus from Vine Street. The walk also leads to the Kingsgate Conference Center and overlooks the University Commons landscape. A single step at the junction of the concrete walk and the stone walk is hard to notice and is a possible trip hazard. Lighting is ball-in-basket luminaires.

Recommendations

Address the tripping hazard of the walk.

Replace ball-in-basket luminaires with lighting that is consistent with the principles of the light pollution reduction credit of the LEED standards. In particular, design new lighting in conformance with the Illuminating Engineering Society of North America’s exterior lighting recommended practices.

Power Plant

Recommendations

Replace the daylilies and other plantings along the front of the power plant with a simple grass lawn panel.
Off-Campus Character Areas

Cincinnati Observatory Center

The university notes in the Getty Foundation grant application that “The Observatory is owned by the university and leased to the Cincinnati Observatory Center, a private nonprofit organization. This facility’s history spans more than 150 years and two different locations. It was the brainchild of Ormaby McKnight Mitchel, a professor at UC’s predecessor Cincinnati College, whose enthusiastic lectures awakened public enthusiasm for astronomy locally. The original Observatory was built in 1842 atop the present Mt. Adams, overlooking Cincinnati, with former U.S. President John Quincy Adams laying the cornerstone. In 1871, the University of Cincinnati accepted control of the Observatory and moved the facility to its present location in Mt. Lookout, just a few miles away. The original cornerstone was moved to become part of the new structure. Today, the Observatory Center works in partnership with the university, private citizens and foundations, and the State of Ohio to carry out its educational programs. After a 2001-2002 renovation, both the exterior and the interior of the Observatory are in excellent condition. It was designated a National Historic Landmark in 1997.”

Recommendations
Retain and maintain this successful landscape design. Respect the design intent of this space when changes are proposed. Take particular care in maintaining plantings within these areas.
Summary

Campuses are active and evolving places with emerging needs and landscapes are living entities. Within the past 15 years, fundamental aspects of American society have changed dramatically. The role of technology in our daily lives has affected our behavior, and we are recognizing that our relationships to the global community and an interconnected environment are altering our treatment of the natural world. These changes, along with others that can only be imagined today, may suggest adjustments to the existing landscapes over time.

A 2002 article in Landscape Architecture magazine noted that “master planning at the University of Cincinnati is an ongoing process and not a completed work. The historic significance of the project for landscape architects and planners lies not only in its guiding design imperatives but in the institutional process that is making them real. Because of their technical and organizational complexity, such campus implementation strategies are often neglected in campus master plan documents and not reported in the design press.” Based on the master plan principles, “what matters is how buildings, paths, and space as outdoor rooms work together and that the campus remain loyal to Hargreaves’ planning imperatives in decisions at every scale.” “Neither pastoral nor monumental, UC is a campus in the true sense of the term ‘encampment.’ It is a place where people come together in pursuit of personal and collective goals. ‘Campuses’ imply safety, density, and access to other people and ideas.”

The success of Master Plan 2000 has made the University of Cincinnati a recognized leader in campus design and planning. The master plan has guided the successful implementation of a transition to a pedestrian-friendly environment that enhances walkability, encourages engagement, sparks intellectual curiosity, and inspires creativity. The unified vision of signature buildings and landscapes put forth by the master plan will continue to benefit the university for many years ahead. The design ideas expressed in the landscapes will also likely be recognized for generations as both novel and representative of their time, place, and a particular world view. Their integrity ought to be preserved through recognition and appreciation of their contribution to the history of campus planning. These recommendations are intended to protect the evidence of this successful endeavor, while maintaining an eye to the future. This approach will also govern the discussion of the signature and heritage buildings in the next chapter.
Endnotes

1 Landscape architecture critic John Beardsley has written about George Hargreaves’
design sensibility in Process Architecture, suggesting it is an “exploration of ideas about
process, material, phenomenology, and entropy derived from contemporary sculpture.”
Beardsley goes on to observe that, “over the years, he has moved from a pursuit of the
outward forms of sculpture to an investigation of its underlying motives and meaning.”
Hargreaves has expressed a particular interest in landforms and has “developed a flair,
unusual in the profession, for the structural and symbolic use of sculptural form.
Typically, the firm’s earthen constructions serve not only to shape space and mark a
place, but also to reveal the natural features of a site.” Beardsley calls this use of the
land “the theater of the environment” in which Hargreaves has “created the setting in
which we interact with the elements” by setting up a framework on the land where the
“vegetation, people, and water wash over it.” As Hargreaves is aware, “there are
paradoxes to his strongly sculptural and phenomenological approach. His designs are, as
he puts it, ‘natural, but not natural looking.’ His earthen forms are obviously man-made,
but with the intent to establish a visual and physical connection between people and the
natural systems within which they live. At the same time, they address the cultural
practices that profoundly alter the natural character of the landscape—especially
patterns of consumption and waste, of environmental indifference and misjudgment.
His designs are at times starkly contemporary, but they convey an awareness of history.”
3 Ibid., 10.
4 Ibid., 10.
5 Presentation of the work-in-progress Campus Heritage Plan at UC in April 2007
included recognition of the success of the master plan recommendations for and
execution of increased connectivity on campus. In response, some of the students in the
audience described continued frustration with connectivity and the difficulty they
encountered on a daily basis traveling between specific parts of the campus. The Campus
Heritage Plan team suggested that the students provide information about these
problems to campus planners, and we encourage this discussion.
6 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
7 Mary Bridget Reilly, “Campus Landscaping Sowing Seeds of International Acclaim”
Currents (University of Cincinnati, January 8, 1999).
9 University of Cincinnati, Getty Foundation Campus Heritage Grant, 9.
10 Hargreaves Associates, University of Cincinnati Master Plan 2000 (Cincinnati,
University of Cincinnati, 2000), 62.
11 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
12 Reilly, “Campus Landscaping Sowing Seeds of International Acclaim.”
14 University of Cincinnati, Getty Foundation Campus Heritage Grant, 7.
16 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
17 Hargreaves Associates, University of Cincinnati Master Plan, 73.
18 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
19 University of Cincinnati, Getty Foundation Campus Heritage Grant, 5.
20 Hargreaves Associates, University of Cincinnati Master Plan, 65.
21 Ibid., 68.
22 Hargreaves Associates, University of Cincinnati Master Plan, 69.
23 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
24 University of Cincinnati, Horizons, September 2004, 21.
25 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
26 Hargreaves Associates, University of Cincinnati Master Plan, 67.
27 Ibid., 60.
Endnotes (continued)

28 University of Cincinnati, Getty Foundation Campus Heritage Grant, 5.
30 University of Cincinnati, Getty Foundation Campus Heritage Grant, 6.
31 University of Cincinnati, Getty Foundation Campus Heritage Grant, 8.

Photography

All photography for Chapter 5 was supplied courtesy of the following entities:
John Milner and Associates
Public Library of Cincinnati and Hamilton County
University of Cincinnati:
Academic Health Center Photo Services
Administration and Finance, Planning + Design + Construction
University Libraries
 Archives & Rare Books Library
 University Digital Collections
University Photo Services
Chapter 6

Architectural Assessment and Recommendations

Introduction

This chapter describes and analyzes the character and features of buildings on the East and West campuses at the University of Cincinnati. In particular, this chapter explores individual “signature” and “mature” or heritage buildings through a narrative description of their forms, components, and materials, accompanied by photographic and cartographic illustrations. Condition, management, and maintenance issues that threaten the long-term viability of these buildings are also discussed.

The survey is divided into two groups, “signature” and “mature” buildings, on the basis of a list submitted to the Getty Foundation. To understand and discuss these buildings, the survey team reviewed the entire campus environment during a series of campus tours in October, November, and December 2006, using Paul Bennett’s University of Cincinnati as a guide for further information about the buildings. We also benefited from observations of the signature buildings and landscapes by Michael Sorkin, engaged as the architectural critic for the Getty grant, whose commentary (see Appendix A) offered a unique perspective on works of the “recent past” that in most campus heritage plans would only rarely be considered for their significance before reaching the 50-year threshold for historical evaluation. Finally, while this plan focuses on “signature” buildings selected by the Office of the University Architect, the list of “mature” buildings was expanded on the basis of field observations, for a fuller discussion of those resources more than 50 years old.

Each structure was visually assessed from the exterior; limited interior assessments focused on major public spaces or rooms and features that were brought to the team’s attention during the campus tours. The campus buildings that are the focus of this chapter include (figures 6-1 and 6-2):

Signature Buildings

West Campus:
- Aronoff Center for Design and Art
- Campus Recreation Center
- College-Conservatory of Music; CCM Village
- Vera Clement Edwards Center
- Engineering Research Center
- Richard E. Lindner Center
- Joseph A. Steger Student Life Center
- Donald Core Tangeman University Center
- University Pavilion

East Campus:
- Vontz Center for Molecular Studies
Mature Buildings

West Campus:
• Alms Building
• Baldwin Quadrangle: Baldwin Hall, Old Chemistry Building, Swift Hall; Braunstein Hall
• Carl Blegen Library
• Dieterle Vocal Center (formerly Schmidlapp Gymnasium)
• Annie Laws Auditorium (Teachers College)
• McMicken, Hanna, and Cunningham Halls
• Memorial Hall
• University YMCA
• Wilson Auditorium
• Van Wormer Hall

East Campus:
• Health Professions Building
• Logan Hall

Mt. Lookout (Off-Campus):
• Cincinnati Observatory

These buildings, along with their landscape settings, are icons of the academic vision and aspirations of successive generations of university leaders and patrons. They reveal the influences of choice of architects, stylistic trends, topography and expansion patterns, economic factors that affected the duration and coherence of building campaigns, and the vision of the Hargreaves master plan.

Overview of Campus Architecture

As discussed in Chapters 2 and 3, much of the University of Cincinnati campus was, until the mid-20th century, shaped by classical planning and aesthetic traditions. The university’s traditional buildings display a variety of styles — each influential when the buildings were constructed — which characterize discrete areas within the campus and infuse the whole with layers of significance. Although not typically considered “signature buildings” like those that have raised the university’s national profile in the press, these structures are still integral to the character of the built environment as the campus has evolved.

The Beaux Arts style, made fashionable in public buildings and civic planning by the World’s Columbian Exposition of 1893, came to dominate early development on the West Campus through the use of a vocabulary of monumental symmetrical forms and axial relationships, expressed in masonry, and the classical orders seen in examples like Van Wormer Hall and Baldwin Quad. A restrained Art Deco-detailed classicism is manifested in the Blegen Library, Annie Laws Auditorium, and Braunstein Hall. This movement was carried forward in the freely interpreted Neo-Georgian style of buildings like Tangeman University Center (the old “Union” building embedded within the present structure) and “new” McMicken Hall. Only Memorial Hall and the University YMCA building portray a more romantic collegiate Gothic aesthetic.
Successive building campaigns increasingly challenged classical values of harmony, stability, and unity, replacing them with strict functionalism, competing and conflicting axes, increasingly irregular forms, and unpredictability of deconstructivism, seen in the Aronoff Center for Design and Art and the Vontz Center for Molecular Studies. These buildings express more about the organization of social spaces within than a particular aesthetic. In the new century, University Pavilion, the Steger Student Life Center, and the Campus Recreation Center suggest the return to a restrained “classical” vocabulary of strong geometric forms used to define space while decorative elements are used to express structural forms and modern materials.

However, if categories based on “style” describe the chronological development of the campus, campus buildings may also be discerned as sharing common patterns derived from topography, building materials, and character-defining features, as objects in the landscape or as frames for open space, as derivatives of the automobile’s necessary presence on campus, and as the products of reshaping open space and surrounding neighborhoods through building retention and demolition of the urban fabric. Not surprisingly, the interplay of these patterns and the grouping of land/building uses — both at the perimeter of the “superblock” and as infill within the core — play significant roles in defining the character of the campus and its various districts. The University of Cincinnati Master Plan 2000 provides an extensive analysis of these and other physical frameworks of the campus.

Construction Chronology

Overlaying plans of campus building development, in decade-by-decade layers, show the patterns of earliest construction along the “Academic Ridge” and in the adjacent ravine. Later, they show building out at the fringes of the superblock, culminating in the astonishingly dense infill of the last decade, which has brought the university to the 21st century (figures 6-1 through 6-24).

Topography and “Force Fields”

Topography has played a major role in the development of the university's West Campus buildings. The orientation and location of buildings responded to the topography of Burnet Woods, establishing a framework and form for the development of the hilltop campus. The master plan analyzes these and other “force fields” as a means of linking historic and contemporary campus buildings and open spaces.

- First, the ridge running north-to-south on the west side of campus became the location of Samuel Hannaford’s “old” McMicken Hall and Van Wormer Library, parts of a symmetrical alignment proposed in an 1895 “suggested” view of the “University of Cincinnati Campus in the Twentieth Century.” Subsequent buildings were located along this “Academic Ridge” to create a formal, outward-facing line of buildings along and above Clifton Avenue.

- Second, a ravine running northeast behind the ridge bisected the present campus superblock and provided space for recreational activities. Nippert Stadium and an open-air amphitheater took advantage of the natural topography of this ravine, thereby establishing a new axis of construction.
Third, Baldwin (now Herman Schneider) Quad filled in the northeast end of the ridge, adjacent to the ravine. Baldwin Hall, Old Chemistry Building, and Swift Hall were composed at a tilted 13-degree angle from the linear arrangement of buildings along the Academic Ridge. Buildings added to the campus were generally oriented around one of these three axial constructs. As the campus grew away from these three axes, construction was oriented to streets. Eventually, the ravine was filled in with new construction, providing a natural subterranean location for the garage beneath the Mary Emery Hall of the College-Conservatory of Music. An earlier amphitheater, at the south end of the ravine, is echoed in the Patricia Corbett Theater’s fanlike shape.

At a pedestrian scale, the hilly terrain of ridge and ravine has required the construction of steps, stairs, bridges, and ramps for building access. Entrances to many buildings occur on multiple levels, taking advantage of the sloping ground planes. For some buildings, the main floor is level with grade on one side while exposed foundations at the opposite side form a plinth for the construction rising above.

Relationships between Buildings and Open Spaces

Early campus construction addressed open space in two ways. Buildings located atop the ridge at the “Clifton Arc” faced outward to acknowledge the city and public street grid. Behind this public front, structures were sited in ways that created open spaces within processional groupings of buildings. Baldwin Quad and Teachers College Courtyard are examples of spaces defined by buildings.

Later, mid-20th century construction did not appear to address the creation of open space. Rather, structures during this period were placed around the perimeter of the campus to accommodate the automobile. At the same time, buildings constructed within the campus core were large enough to enclose space. The science and engineering cluster became a stand-alone destination rather than contributing to the pedestrian feeling and scale of the earlier campus. Large buildings became barriers to casual pedestrian interaction.

As envisioned in the University of Cincinnati Master Plan 2000, signature buildings have been constructed to adapt to spaces. Organic forms curve and angle around “force fields” and pedestrian “streets.” Interstitial spaces have been carved out as small-scale, lush courtyards. Some buildings, like the Steger Student Life Center, have been designed with openings at ground level to allow pedestrians access through the building, without entering the interior, as gateways to adjacent open spaces and buildings. This building also shelters the Mews, an intimate collection of outdoor spaces designed concurrently with Steger.

Building entrances and parking bear strong relationships to open-space issues:

Entrances

Campus buildings constructed in the first half of the 20th century celebrated the sense of arrival. Monumental stairs, elaborately carved architraves, entrance bridges with large light pylons, and delicate concrete cantilevered canopies were designed to be focal points and provide orientation to the pedestrian.
Determining where to enter some later structures, where entrances are located deep in shade, off tunnels, under buildings, or at inside corners, seems to require special knowledge. Many of these structures, responding to site topography, have more than one “principal” entrance and, on occasion, what appear to be entrances are actually emergency egress doors. Dumpsters and loading docks also often appear to be more prominent than building entrances. A notable exception is University Pavilion, which is remarkable for its bright red panels and metal canopies marking and sheltering the main building entrances.

Space for Parking

Accommodation of the automobile has molded the university’s built environment in many ways. As more and more students arrived by single-occupant cars, the need for parking and access to parking lots and garages drove construction decisions. During the last quarter of the 20th century, large portions of the campus beyond the Academic Ridge and ravine came to be occupied by surface lots. Implementation of the master plan carried with it the determination to remove surface parking while providing equivalent space in new parking structures. Buildings such as Rieveschel, Langsam, Lindner, and Edwards were constructed with underlying parking structures, resulting in an imposing massiveness that dwarfs earlier structures.

Demolition

Historic aerial photographs reveal that a number of older structures have been demolished to make way for new buildings and open spaces. In particular, McMicken Commons required significant demolition between McMicken Hall and Tangeman University Center to create this new, monumental open space and for construction of University Pavilion. Removal of buildings was also required to construct the large-scale Campus Recreation Center north of Nippert Stadium. Other demolition has resulted in the removal of Sawyer Hall; one of the “Three Sisters;” and Sander Hall. The master plan envisions further potential demolition, notably Wilson Auditorium, and there has been discussion of removing the University YMCA building.

Neighborhood Character

The West Campus has grown to fill a superblock that clearly demarcates the neighborhood edge. At earlier times, the Clifton and Corryville neighborhoods were interwoven along the north and east sides. The first significant move beyond the Academic Ridge and ravine occurred with the construction of Alms and the DAAP Addition in the 1950s, extending the campus northward across a street into Burnet Woods. Urban renewal of the Corryville commercial center at Vine and McMillan Streets; the widening of Jefferson Street and Martin Luther King, Jr. Drive; construction of the “Three Sisters” group of dormitories; and displacement of small-scale housing by surface parking (and the federal government’s construction of the EPA lab in the early 1970s) effectively redrew the northern and eastern boundaries.

The loss of residential neighborhood areas had an impact on commercial strips along Jefferson Avenue, which fell into vacancy and disrepair. Recognizing that the quality of the surrounding neighborhoods’ environments had a critical impact on attracting and retaining students and faculty, the university undertook an ambitious program of fostering neighborhood collaboration to encourage the development of new housing and commercial space that would enhance both the campus setting and
the neighborhoods. Community urban redevelopment corporations were established in partnership between UC and the neighborhood organizations of Clifton Heights, University Heights, and Corryville. Among the resulting new development efforts are University Park and McMillan Park retail on Calhoun Street (both on campus); Bellevue Gardens apartments on Martin Luther King, Jr., Drive; luxury condos and apartments at the Village at Stetson Square (adjacent to Bellevue Gardens); Charlton Place apartments; and Stratford Heights student housing west of Clifton Avenue. As these projects have come on-line, the university has begun to withdraw from its involvement in the corporations. Significant neighborhood clearance is in evidence along the McMillan/Calhoun corridor, where redevelopment remains incomplete.

Materials

Many of the earliest campus buildings were constructed in revival styles using brick with stone or terra-cotta detailing. The red brick and buff-colored trim visually unite the buildings to create a cohesive appearance. By the mid-20th century, as modernism arrived on the campus, brick and stone continued to be favored materials; however, large expanses of glass and exposed concrete structural systems replaced multi-light double-hung windows, carved stone trim, and intricate terra cotta decoration. Aluminum-frame window systems and precast exposed aggregate panels were hallmarks of contemporary high-rise construction on the east side of the campus superblock. At the end of the 20th century, brick — although in a variety of colors, especially the brown and tan ranges — remained the characteristic material choice, with structural concrete becoming more prominent in cantilevers and balconies. Ribbed-metal panel systems were also employed, but mostly for sheathing mechanical penthouses. For the most part, architects for projects completed since the turn of the 21st century have rejected brick as the primary finish material and, instead, used a variety of metal panel or shingle systems, or precast concrete.
Description, Assessment, and Recommendations for Signature Buildings

As exemplars of modern architecture, UC’s signature buildings are described and assessed by noted critic Michael Sorkin in Appendix A. Being works of the recent past, these structures' significance lies in the extent to which they embody clear design ideals, as the works of recognized masters at the peaks of their careers.

Detailed notes describing the character-defining features of the structures are presented in the thumbnail descriptions, photographs, and condition assessments found in Appendix B. It should be noted that sealant failures or the likelihood of such failures is an almost universal maintenance issue that must be continually addressed for all of the buildings surveyed.

West Campus

Aronoff Center for Design and Art (1996)
Peter Eisenman in association with Lorenz and Williams

One of a few built examples of work designed by Peter Eisenman, the complex mass of the Aronoff Center is nestled against the side of DAAP Addition into the terrain of the vestigial Burnet Woods landscape.

Eisenman’s “generative methodology” (to use Michael Sorkin’s phrase), which might be the pioneering application of “force fields” later described in the master plan, is expressed in a vocabulary of deconstructed wall planes and a disorienting floor plan with a confusing array of interior footbridges and passageways. The interior skylighted main hall/atrium space, lodged between studio spaces and the DAAP building, arcs upward to follow the external topography as a monumental staircase. Office, library, and studio functions are organized along the outside with views of Burnet Woods. The lightweight material construction of the building (exterior insulation and finish system, interior drywall, aluminum window frames with baked-enamel finishes, pastel color palette), while a practical low-budget means to a formal end, imparts a perishable character to this contemporary masterpiece.

The atrium promenade offers a community gathering space, particularly in the lower-level café, and is used for juried critiques of student work. While the formal expression of the atrium is relatively fixed, office and studio spaces along the north side of the building are more utilitarian in character and could be reconfigured to meet changing needs. Materials and finishes have experienced extensive wear and tear in the decade since the building’s completion, notably the exterior cladding system, which shows signs of degradation (cracking, surface delamination to substrates, and fading) and discoloring biological growth in shady areas where runoff has washed over surfaces. Water infiltration around the window system has been persistent.

Recommendations: Maintenance and Adaptability

The long-term performance of synthetic stucco is still an unknown but vulnerable to moisture intrusion. At a minimum, the exterior finish system should be repaired in kind. Consideration may be given to proven, traditional stucco materials, but there will undoubtedly be issues of structural support for heavier materials, color matching, and long-term maintenance of any applied paint coatings, all of which militate against a wholesale change of the cladding material. The lack of flashing at heads and sills and inadequate weeps at window assemblies must be addressed. Appropriate detailing of remedial measures or replacement window systems should be selected to maintain the architect’s “thin-line” aesthetic and color scheme.

Studio and office areas may be reconfigured without apparent effect to the building character. The approach to the principal entrance from Clifton Court and the Crosley Tower plaza and garage should be reconsidered in order to strengthen linkages to campus pathways. This will assist in better orienting the visitor who otherwise approaches the interior atrium from the DAAP Addition — a very confusing path, indeed.
Campus Recreation Center (2006)
Morphosis Architects

The CRC is a key component of the streetwall along MainStreet and also mediates an extreme 20-foot grade change from end to end. It is a brooding, massive programmatic ensemble of student housing, classrooms, recreation facilities, and a dining room intended to animate campus life 24 hours a day, seven days a week. Enclosing the open north end of Nippert Stadium with an expansive roofscape and a bridge to the Lindner Center, the S-curve of the building parallels MainStreet and extends the arc of the stadium’s grandstand to an intersection with the cantilevered housing slab, which visually terminates the Campus Green. Dark colors, metal-panel cladding materials, canted perforated metal shade screens at rooftop level, and the slotted windows in the dormitory accentuate the expressive forms of each component of the building envelope. This building has also achieved LEED certification.

The CRC, which opened in early 2006, is in excellent condition with no signs at this early date of material failures. Much of the building envelope’s performance depends upon the success of the gasket system and sealants used in the cladding assemblies, the life expectancy of which is unknown. The building’s somber nature and recessive activity spaces do not notably contribute to a sense of “24/7” activity on MainStreet. Dark colors, low lighting levels, shadowy recesses, and the interior plaza punctuated by sunlit oculi project a foreboding air that can be uninviting. Concerns have been expressed that the quality of the dormitory living spaces is diminished by the stinginess of the strip windows. Classroom and dining spaces may require reconfiguration over time as needs change. The planning team did not visit the residence-hall interiors.
Recommendations: Maintenance and Adaptability

Failed joint sealants and expansion joints will need to be repaired and replaced on a cyclical basis. Birds roosting in the metal screens may become a nuisance, and steps should be taken proactively to minimize the problem. The architect should be engaged to re-examine the interior plaza design and suggest ways of softening its present character which may be deterring people from gathering comfortably—perhaps through the introduction of technological elements, such as “light pipes” in the oculi or fiber optic lighting, consistent with the building design.
Integrated into the topography of the ravine behind the academic ridge, the Patricia Corbett Theater roof, with its fanlike shape, recalls the earlier amphitheater. A series of interior and exterior public spaces, often approached down cascading stairways and affording glimpses of landscape, are woven together around four performance venues by an extensive armature of classroom/studio, office, stage support, and practice spaces. Adjacent rehabilitated historic structures, including Dieterle Vocal Arts Center (formerly Schmidlapp Gymnasium) and Memorial Hall, further enrich the complex.

The palette of warm brick elegantly detailed, horizontal window mullions uninterrupted by vertical mullions, “stacked” rectangular modules of the curtain walls at lobby entrances, and the vest-pocket gardens and plaza spaces reinforce the building’s horizontal emphasis and intimate scale. Within the CCM complex, spiky pyramidal rooftop monitors on Mary Emery Hall suffuse the principal interior concourse and grand stair with daylight. The exuberant light fixtures and rich wood finishes of the rehabilitated Corbett Auditorium interior have turned this performance hall into an event in itself. The CCM was the winner of 2001 American Institute of Architects National Honor Award.

The CCM is in excellent condition and appears to perform well for its intended functions. The highly specialized spaces within CCM are unlikely to be easily altered for other purposes; interiors of lobbies and performance venues will eventually require upgrades in seating, finishes, electronics, and/or acoustic performance. The rehabilitation of Corbett Auditorium is a first-rate example of this kind of change.

Recommendations: Maintenance and Adaptability

The principal issue appears to be ongoing maintenance of masonry, some of which displays signs of biological staining and efflorescence, missing flashing, and sealant failures. Water infiltration through masonry needs to be addressed immediately and may require rebuilding of some parapets, which do not appear to have flashing in all instances. Inspecting flashings, cleaning masonry surfaces using the gentlest means possible, and re-pointing where necessary using the original mortar specification are appropriate components of a cyclical maintenance regimen.
Vera Clements Edwards Center (1992)
Skidmore, Owings & Merrill

Built for use as “swing space” during the major building campaign, the Edwards Center is an “undistinguished functional work...more corporate than campus.” The precast-concrete building structure appears as a skewed cube above the podium.

The building is in excellent condition and easily adaptable to various office and classroom functions.

Recommendations: Maintenance and Adaptability

Interior adaptation was built into the design equation for the Edwards Center. Cyclical, non-abrasive cleaning of the exterior is required to remove dirt and staining.
Possibly one of Graves’s best buildings, the ERC provides a transition between the traditional campus to the scale of modern signature buildings. It is sited on-axis with University Avenue on the approach from Jefferson Street; however, the building’s apparent symmetry is counterbalanced by its off-center entrance module surmounted by a peripteral temple form. Laboratory bays, expressed in four exterior volumes or modules, are linked by a barrel-vaulted copper roof that is punctuated by four mechanical penthouses with conical vent stacks. The floor plan is clearly delineated: the internal core of lab spaces is circumscribed by a perimeter corridor, while office/classroom bays along the corridor’s external edge articulate each of the four building modules. The rich use of materials includes an Ohio sandstone base; brick detailing with roundel windows, which provide natural light to the internal circulation paths at each end of the structure and in setbacks between modules; and interior wood trim. Inside, a barrel-vaulted stairway (echoing the roof form) within a classic Gravesian peristyle hall/lobby transects the building and mediates the grade transition from MainStreet to Library Square.

The building is a model of functional clarity and is pleasing in its post-modern detail. It is in excellent condition. Lab and office/classroom bays may require reconfiguration as needs change, but such change is unlikely to affect the basic building plan.

Recommendations: Maintenance and Adaptability

Cyclical, non-abrasive cleaning of the exterior is required to remove dirt and staining. Faded sealants require replacement and should match the color of the brick; open joints should be sealed. Special attention should be given to the character-defining peripteral temple form, where sealant failure and color washout are most evident. The integral color of precast-concrete sills is washing out and streaking the face of the building.
Richard E. Lindner Center (2006)
Bernard Tschumi

The Lindner Center’s “beefy, minimally detailed, structural system” is expressed in the triangular geometry of deeply recessed windows and the curvilinear precast concrete construction of the exterior. A vertigo-inducing, full-height central atrium — with glass railings that dissolve the corridor edges at each floor, a free-floating ribbon-like stair, a red and black color scheme, and display cases celebrating the university’s athletic programs — is surrounded by flexible perimeter offices. The building has been LEED certified.

The building is in excellent condition. The geometry of its precast exoskeleton minimizes opportunities for successful alteration. Likewise, the central atrium has an almost temple-like quality in which most change will be reflected in the contents of exhibits. Perimeter office areas are flexibly planned and could easily be changed as needs arise. The building seems suitable for a future green roof installation.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan for the building should be prepared. Changes to perimeter office areas should be limited.
“Literally and figuratively central in creating the form and atmosphere of MainStreet,” the Steger Center’s large windows reveal its mixed tableaux of retail, student activity organization offices, and multipurpose uses while affording views of street activity, Nippert Stadium, and The Mews. This sliver of a structure follows the curve of MainStreet and stair-steps with the topography to provide terraces and recesses among the column bays for gathering. It also forms a gateway between MainStreet and the Herman Schneider Quad. The building’s horizontal scale is emphasized by its brick base surmounted by terne-coated, metal-clad structure and expressed by horizontal seams of cladding and brises soleil. Simple interior spaces have polished concrete floors and drywall finishes. The SSLC is LEED certified.

The building is in excellent condition and receives high marks for its functionality. While the overall footprint is fixed by the geographic context of the building, making expansion unlikely, its loft-like interior spaces can be reconfigured for changing office or commercial uses without adverse impact on the whole. The building appears suitable for a future green roof installation, particularly since roof areas are visible from the interior.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan for the building should be prepared. Guidelines for commercial signage may be desirable in the future, if none are already in place. Decomposed granite being tracked in from the adjacent Mews is causing floors to scar prematurely.
The TUC is a gathering space and multipurpose meeting facility with food courts and a campus bookstore. The iconic clock tower, floating within a skylight atop the gabled slate roof, and Ionic limestone portico face McMicken Commons and align with McMicken Hall. The zinc-coated metal (echoing the clock tower cladding) encasement of a traditional brick building describes a circle in plan intersected by the west wall of the original 1935 neo-Georgian structure. Curved glass walls on the east side open to views of Bearcat Plaza and Nippert Stadium from a skylighted interior atrium, which occupies the original building shell. None of the original building interior has been retained.

The building is in excellent condition and serves well as an indoor gathering space and “transfer point” between various campus paths on different levels at the heart of the campus. It is a functional component of the larger campus activity center, which includes the Campus Recreation Center and the Steger Student Life Center. Large, loosely programmed spaces could be easily modified to meet changing needs; food vendor and bookstore spaces and furnishings are most likely to change over time.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan should be prepared for the building, with particular attention given to inspection of the interlocking seams of metal shingles and siding as well as to in-kind repair or replacement of slate roofing and cleaning and re-pointing of masonry.
University Pavilion (2003)
Leers Wenzapfel with GBBN

University Pavilion, housing a variety of student services as well as university executive offices, is an elegant enclosure for the south side of McMicken Commons. “Volumetrically simple...at once airy and solid,” the pavilion’s limestone panel walls with punched windows on three sides relate to the Teachers College Quadrangle and more traditional buildings nearby. The solid planes of the limestone “wrapper” are then offset at the corners adjacent to McMicken Commons to, expose the five glassy bays of the atrium within. Set into a sloped site (formerly the site of Beecher Hall), a monumental interior stairway inside of the glass curtain wall ascends the academic ridge within the atrium and is mirrored by a parallel exterior stair in granite. Red insets reveal public entrances at varying levels, which are announced by projecting flat canopies supported by slender diagonal braces. The structure is capped by the cantilevered roof overhang of the penthouse, which floats over a roof terrace. Interior finishes include a generous use of maple screen paneling for atrium railing panels and walls, which is complemented by the brushed-aluminum or stainless-steel hardware.

The building is in excellent condition. Office space is likely to be adapted as needs change.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan should be prepared for the building, along with clear specifications or guidelines for partition systems and materials to be used in renovated office areas. This approach will ensure a high level of finish commensurate with the building design.
East Campus

Center for Academic and Research Excellence/Crawley Building
(completion anticipated in late 2008)
Studio Architecture with Harley Ellis

This building was under construction at the time of our visit and was not assessed.
Clad in prefabricated brick panels, the sculptural form of the Vontz Center features curved or twisted wall planes juxtaposed with the glassy grids of projecting window bays. Inside, the open cruciform plan neatly divides office and laboratory functions, which meet in a central circulation atrium. Interstitial floors house mechanical, electrical, and plumbing systems for the laboratories. Natural wood finishes delineate lobby/circulation spaces.

The building is generally in excellent condition and, by all accounts, works extremely well for its intended purposes. The building is designed with interstitial spaces to allow easy reconfiguration of mechanical, electrical, and plumbing systems without disruption to ongoing work in the building.

Window seals have leaked and repair or replacement requires exterior access. Automated interior sun screens were added to windows to curb glare and heat gain. Brick panels show open joints and moisture damage that need to be addressed.

Recommendations: Maintenance and Adaptability

The long-term durability of the brick panels is unknown. A cyclical maintenance plan should be prepared for the building to address water leakage, with clear specifications for the repair of brick-panel and window systems. This approach will prevent future ad hoc solutions that would compromise the building’s character. Office and laboratory spaces each have their own material palettes, which should be respected and maintained.
Description, Assessment, and Recommendations for Historically Significant Buildings

The significance of UC’s “mature” structures lies in the story they tell of the early development and 20th century expansion of the university. These buildings reflect university leaders’ aspirations to build a “city [of learning] on the hill,” following classical principles of planning and design.

Detailed notes describing the character-defining features of the structures are presented in the thumbnail descriptions, photographs, and condition assessments found in Appendix B. In recommending preparation of cyclical maintenance plans for each building, it should be noted that the university already has a successful regular process for roof inspections. Additionally, sealant failures or the likelihood of such failures is an almost universal issue of maintenance that must be continually addressed for all of the buildings surveyed.

Off Campus

Cincinnati Observatory (1873), Samuel Hannaford

Ormsby McKnight Mitchel Building (1904), Samuel Hannaford & Sons

Located away from the main campus, the Cincinnati Observatory complex is a National Historic Landmark and a unique cultural monument of significance to the university, the city, and the nation. The recognition of the observatory’s historical importance through its recent rehabilitation demonstrates the university’s commitment to preserving this important resource.

The buildings have recently been restored and are in excellent condition.

Recommendations: Maintenance and Adaptability

A historic structure report (including a cultural landscape component) for the observatory buildings and grounds should be prepared, if one has not, to supplement the National Historic Landmark nomination as the documentary foundation for planning a cyclical maintenance program and careful in-kind repair based on analysis of materials.
Alms Building (1952)
George Roth and James E. Allen

Designed to house the College of Applied Arts, the Alms Building “jumped” the barrier of University Avenue (now Clifton Court) to occupy what was then the southwest corner of Burnet Woods. It is a well-proportioned, geometric, concrete and masonry structure, the horizontal emphasis of which — accentuated by rooflines, projecting canopies, and ribbon windows — is strongly reflective of the early modernists, in particular artists such as Piet Mondrian. Large aluminum-framed windows set in front of the structural grid offer views of the park to the north, dissolving the boundary between interior and exterior space, while the campus side presents a solid composition of masonry planes and glazed voids. The DAAP Addition forms an ell with Alms and complements the ensemble in form, massing, and materials. Aluminum window systems are single-glazed without thermal breaks and awning/jalousie window units may allow air and water to infiltrate or be inoperable.

The original auditorium, gallery, and library spaces have been cluttered with makeshift studio partitioning, furniture, and trash, which obscure the original interior clarity. There does not appear to be a second means of egress from these areas, and the original stair no longer meets code.

Recommendations: Maintenance and Adaptability

Interior spaces, if no longer needed for their intended purposes, are adaptable as open studio space, but consideration should be given to using these spaces as models of interior design and contemporary furnishing that reestablishes their integrity. Front-door access to the building should be re-established and lobby spaces clarified. Elevator access and code-compliant means of egress should be thoughtfully upgraded or inserted to avoid compromising the unity of the spaces. A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared. Poor thermal performance in the window systems may result in a desire to retrofit or replace them. In-kind repair of such character-defining features is preferable from a preservation standpoint, and alterations should be carefully considered to match the existing materials, framing patterns, and transparency.
Herman Schneider Quadrangle (formerly Baldwin Quadrangle):
Baldwin Hall (1909) and Old Chemistry Building (1917), Teiteg & Lee and Woodward & Garber with addition by Harry Hake (1938); Swift Hall (1925), Harry Hake; Braunstein Hall (1933), Crowe & Shulte

Baldwin Hall, built to house the College of Engineering, is the focal point of a rectangular open green space that was balanced by subsequent construction of Swift Hall and the Old Chemistry Building. Baldwin Quad was the first attempt to apply the Beaux Arts planning idiom to the UC campus, steering toward a new orientation that canted off axis from the original academic ridge — the “city on a hill” where buildings were lined up in formation and overlooked the city below — by initiating a new practice of grouping buildings together in axial symmetry to create self-contained spaces.

These massive, neo-classical red brick and terra-cotta buildings feature temple fronts and symmetrical façades. The processional entrances are elaborated by monumental stone stairs, double doors with transoms, engaged piers and Ionic columns supporting entablatures, and classical detailing such as dart-and-egg molding, cartouches above doorways, tripartite inlaid meander fretwork in the friezes, and heavy cornices with dentil molding. Limestone or terra cotta is used in stringcourses to delineate floors and lintels and sills for double-hung six-over-six windows. The interior of Swift features a Rookwood tile vestibule, and Old Chemistry has a Rookwood fountain.

In 1920, fire ravaged Baldwin and prompted the first restoration; since then it has undergone three renovations, in 1971, 2002, and 2003. Old Chemistry was expanded in 1938, and the interior was renovated in 1972. Windows have been replaced. Swift Hall underwent a complete renovation as part of the Steger Student Life Center project in 2004.

Baldwin is in excellent condition, with public spaces and classrooms rehabilitated to retain their historic character. Many of its laboratory functions have been moved to the adjacent Rhodes Hall, with which it connects. Swift Hall is in excellent condition, although it exhibits some staining in the stone work. Old Chemistry needs updating and repair. Corridors are cramped gathering spaces for students waiting for class changes.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, notably for terra-cotta cornices and trim and for repointing the brick masonry. Because the interiors of Swift and Old Chemistry have undergone significant change over the years, few character-defining features remain (the Rookwood pieces are an exception), and spaces can be freely reconfigured.
The Carl Blegen Library, a stripped-down rendition of a classical building in the style of Paul Cret, was built during the university’s early-20th century expansion to house a growing collection of 500,000 volumes. The principal façade is composed of a limestone base (which extends two more stories below the apparent grade at the sides and rear) and two-story reading room surmounted by an attic story. The central bay, with tall windows denoting the reading room, is clad in limestone and flanked by projecting brick pavilion ends, which are distinguished by fluted corner pilasters and shallow vestigial balconies with bas-relief panels below deeply inset windows.

Art Deco decorative elements, typical of this transitional period, appear in the Greek, Hebrew, and Latin iconography in bronze window grilles, front entrance and interior doors to the reading room, exterior and interior light fixtures, bas-relief stone sculpture, and other details of the interior public spaces. The two-story reading room on the second floor, spanning the central façade bay above the main entrance, has a shallow arched ceiling and tall windows that allow daylight to enter. Replacement windows have been installed throughout the building.

The building is generally in excellent condition, although the reading room is highly cluttered and should be restored down to furnishings and fittings. The closed stack and study carrel areas may be ripe for reconfiguration, depending on current library needs. Information-technology, energy-conservation, life-safety, and accessibility upgrades may be required.

Recommendation: Maintenance and Adaptability

The building continues to be used for the purposes originally intended and requires little alteration. Restore the simple clarity of the reading room, including the adjacent circulation-desk and card-catalog lobbies. Non-public, utilitarian spaces such as stack areas may be rehabilitated to adapt to new uses.

Great care should be taken with the exterior and principal interior public spaces to preserve decorative metalwork, masonry detailing, interior spatial volumes of public spaces, and decorative features and iconography, using the Secretary’s Standards and best conservation practices. A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, with particular attention paid to bronze and stone conservation, flashings, and re-pointing of masonry (not to mention the removal of “pigtail” fluorescent light bulbs in exposed locations).
Dieterle Vocal Arts Center
(formerly Schmidlapp Gymnasium)

As a counterpoint to the sleekness of the CRC, Dieterle punctuates the southern rim of Nippert Stadium with a Beaux Arts statement in the brick and terra-cotta vocabulary of Baldwin Hall. Dieterle is the only example of a tile roof on campus. The interior has been rehabilitated for use as a choral training facility. The gymnasium volume, which replicates the size of the Corbett Auditorium stage, has been preserved and provides a symphonic practice space.

The building is generally in excellent condition and appears to well serve the new function for which it has been adapted. It seems highly unlikely that the building would ever revert to its original function, for which it is outmoded by current physical recreation standards.

Recommendations: Maintenance and Adaptability

Exterior terra cotta requires removal of paint coatings and careful repair. Replacement window sashes have been set within the original wood frames. These frames and the decorative flagpoles require repainting. A cyclical maintenance plan, including careful, in-kind repair of materials, should be prepared, with attention paid to roof repair/replacement and maintenance of ornamental copper downspout collection boxes, in addition to terra-cotta repair and exterior painting.
Annie Laws Auditorium (1930)
Garber and Woodward

Annie Laws Auditorium is part of the Teachers College quad, and its lobby has long served as a path along the Academic Ridge from McMicken Hall to the Blegen Library. The auditorium is expressed as a distinct volume with engaged pairs of limestone columns in a tripartite colonnade supporting an entablature on the principal façade. Each end of this brick pavilion has single columned bays with inset two-story arched windows. Like Blegen, Laws is a stripped-down classical composition with Art Deco sensibilities. The lobby and double-height auditorium space have extensive classical detailing, such as molded cornices and decorative panels, columns, wainscoting and vaulted or coffered ceilings, and fanlight doors. The auditorium has been divided into two classrooms with suspended ceilings.

The building bears heavy traffic and appears — aside from the lobby and the now-concealed auditorium — to have an undistinguished, utilitarian character. Interior classical detailing in the auditorium has been largely concealed by alterations that divided the spatial volume to accommodate classrooms and lower the ceiling.

Recommendations: Maintenance and Adaptability

Despite the traffic, the lobby and auditorium appear to have survived as hidden jewels of this period of campus development, and should be reclaimed. It is recommended that the auditorium space be restored to its original volume and detailing for multi-purpose use. Exterior stone detailing, especially at the columns, is damaged and requires conservation.
McMicken, Hanna, and Cunningham Halls (1948)

Hake & Hake

The brick classical McMicken with its flanking wings, designed in the Georgian idiom, replaced the original structure destroyed by fire. An iconic Wren-like steeple dominates the Academic Ridge and recalls the country’s colonial roots in the College of William and Mary in Williamsburg, Virginia. A massive engaged temple front with a decorative entablature and three-tiered tower above demarcates the entrance passage with engaged columns, Ionic engaged capitals, and the venerable sculpted lions, “Mick” and “Mack.” An arched passage opens from the University Arc green space to a view of McMicken Commons and the Tangeman University Center. Limestone trim delineates parts of the building, visually separating the two upper floors from the ground floor, which appears as a continuous arcade with inset windows. Replacement windows are double-hung aluminum or fiberglass, and window openings have limestone trim keystones and sills. The dormered gable roof is covered with slate shingles. Interior public lobby areas feature wood cornice moldings, chair rails, and pedimented architraves; classrooms are of utilitarian design. It is significant for its contribution to reinforcing the university’s efforts to project itself as a national institution.

Offices and classrooms are arrayed in a double-loaded corridor scheme. These spaces are generally utilitarian in finish and serve their intended purposes, although information-technology, life-safety, and accessibility upgrades may be required.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, with particular attention paid to masonry, slate roofing, and associated concealed gutters. Stone and wrought-iron stair entrances are deteriorating and should be addressed soon. The lack of expansion joints in long masonry walls may result in cracking. Interior lobbies, in Hanna and Cunningham halls particularly, should retain their architectural woodwork features (architraves, wainscoting, etc.) in their natural finish.
Memorial Hall (1924)
Hake & Hake

Memorial Hall first served as a residential hall for men and later, for women. It is a Jacobethan-style building with a six-story tower sporting large gargoyles at each corner, bay windows, crenelated parapets, a dormered slate roof, and decorative chimneys. A renovation in 1958 added a south annex and altered the hall’s entrance. Memorial Hall harmonizes with the earlier University YMCA building in style and contributes to the change in planning, which redirected buildings from the linear ridge alignment to an expansion that worked with the steep grade of the topography, placing buildings at an angle to the Academic Ridge.

The 1996 building rehabilitation converted dorm rooms into practice rooms for the College-Conservatory of Music.

The building is in excellent condition and functions well for its adapted purpose.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared and should call for checking of downspouts. Properly remove paint and repair the terra-cotta trim. Tower windows should be restored to leaded glass in lieu of the glued-on muntin system presently in place.
University YMCA (1915)
Zettel and Rapp

The University of Cincinnati contracted with the YMCA to open a facility on campus in 1915. Located close to the sidewalk on the Calhoun Street corridor, the compact red brick building with limestone trim is in the Collegiate Gothic Revival style. Several large public rooms feature carved stone fireplaces, wood-beamed ceilings, and leaded-glass bay windows and are ranged along the north and west sides around a central stair hall. Dormitory accommodations are located on upper floors.

The University YMCA is currently unused and showing signs of deterioration due to neglect. Some consideration has been given to removing the building. The interior is currently not fully accessible. Information-technology, energy conservation, and life-safety upgrades are required.

Recommendations: Maintenance and Adaptability

The university should reverse any course toward demolition and seek a creative, sustainable reuse of the structure. The Y's location and character could accommodate alumni-related uses, an honors student study center with housing, public receptions by university officials, or (possibly) library or mock courtroom space for the nearby College of Law. Appropriate mothballing measures should be undertaken immediately. Roof leaks at bay windows and other deterioration of the building envelope (including the steel casement windows) must be addressed immediately through in-kind repairs. Interior finishes must be repaired and code compliance issues resolved in a well-considered rehabilitation plan.
Wilson Auditorium (1931)
A. Lincoln Fechheimer and Benjamin Horst

A sister of the Carl Blegen Library, Wilson Auditorium was built in a stripped-down classical style. Aligned with Braunstein Hall, it “bookends” the Clifton Arc (Taft Law School being the other “bookend”) and extends the line of the Baldwin Quad to connect with Clifton Avenue. As a location for public performances, the building has strong associational ties for the community.

The tripartite arrangement of lobby, auditorium, and stage house is expressed in the streamlined volumes of the building exterior. The almost windowless exterior is articulated by strong vertical lines of decorative stone panels, including Art Deco bas-relief panels on the side elevations. The paneled lobby and second-floor memorial library (featuring a large carved stone fireplace), decorative stairwell railings and light fixtures, and other original auditorium details are also infused with an Art Deco sensibility.

Wilson Auditorium, having been supplanted by the more modern performance venues of the College-Conservatory of Music, is currently unused (or used for storage) and is in poor condition. Its state of neglect has been aggravated by water leakage, vandalism, and use as a police anti-terrorist training center. Insensitive alterations have resulted in the removal of the original front doors and exterior lighting.

The master plan shows the building being removed to make way for a new structure. The building is not currently accessible, and the large interior volumes of the auditorium and stage house present both challenges and opportunities for adaptive reuse. Information-technology, energy-conservation, and life-safety upgrades are also required.

Recommendations: Maintenance and Adaptability

The university should reverse any course toward demolition and seek a creative, sustainable reuse of the structure. If medium-sized, auditorium-like classroom space is not needed on campus, rehabilitation for other academic uses should be considered. Roof leaks and other deterioration of the building envelope must be addressed immediately with appropriately mothballing measures.
Van Wormer Hall (1899)
Samuel Hannaford and Sons

Van Wormer is significant as one of the first buildings constructed on the Academic Ridge and the university’s first library. A cubic, neo-classical building with Greek Revival details and forms, including an attic story, dentil molding on a heavy cornice, a temple front with double-height Ionic columns, and a decorative entablature, it represents the stylistic arrival of Beaux Arts planning principles later evidenced in the Baldwin Quad. In 2006, the glass dome, which had been removed in the 1930s, was reconstructed. The interior is planned around the two-story rotunda with balcony. It recalls the many libraries built by Andrew Carnegie and the 19th century concept of the university as a “city on a hill” and a beacon of learning.

The building was rehabilitated in 2006 and is in excellent condition. Adapted for office space long ago, this former library works successfully for university administrative functions and now holds the honor of being the oldest building on campus.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared. The new stone cladding at the raised building base appears especially vulnerable to moisture and related deterioration.
Chapter 6

Health Professions Building (1916)
Samuel Hannaford and Sons

The Health Professions Building, formerly the UC College of Medicine, was constructed as the last phase of a new Cincinnati General Hospital and Medical College complex built in the Avondale neighborhood just before World War I. The Beaux Arts building is E-shaped with a symmetrical façade on an elevated basement. The seven-bay-wide central block is connected by hyphens to two large projecting wings, each three bays wide, which bracket the ends. The corners of the central block are expressed by shallow projecting bays, and the center bays of the end wings are also projected. Structural bays of the principal façade are delineated by full-height pilasters surmounted by a simple parapet cornice, which is further elaborated with a higher parapet on the central block. Windows are mullioned in bands above masonry spandrel panels set between the pilasters. Van Wormer Hall on the West Campus and the Health Professions Building and Logan Hall (opposite page) on the East Campus are the last Hannaford-designed structures remaining on either campus.

The interior is in poor condition, and the exterior is in fair condition. The building is currently used for classrooms and office space, and its generally utilitarian interiors can be adapted to new uses.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared for the exterior. Inside, the front vestibule, lobby, and auditorium spaces retain finishes and details that should be retained and repaired as needed.
Logan Hall (1915)
Samuel Hannaford and Sons

Logan Hall, formerly the General Hospital Nurses’ Home, is listed on the National Register of Historic Places and was constructed as part of the Cincinnati General Hospital and Medical College complex. The Beaux Arts building is U-shaped, with a symmetrical façade, the central block of which is one story higher than the two projecting wings and features an arcaded entrance loggia. The first floor is articulated by heavy stone banding, which creates a rusticated base. The lobby (the only interior space visited) is classically detailed with a coffered ceiling and pilasters, but the space has been subdivided by drywall partitions that are not at full height. Original interior wood doors appear to be in place.

The building is in good condition and is reasonably well suited for its current office use by a university-affiliated psychiatric practice group. Former residential spaces now used as offices are presumably utilitarian and can be adapted to new uses.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared for the exterior and should include repair of ground-floor stucco, stone cleaning and repair, and flashing and sealant replacement. Inside, the lobby retains original finishes and details and should be restored.
Maintenance Recommendations and Guidelines

Building uses come and go, but original historic fabric, once lost, can never be reclaimed. Seemingly small losses and degradation that occur over time will, eventually, amount to significant and irreversible damage to the integrity and character of both signature and historic resources. Therefore, the goal of preserving and maintaining historic or character-defining fabric, features, materials, and design elements is the basis of the recommended treatment approach. The importance of routine cyclical maintenance using methods and materials appropriate to the university’s buildings, and of training facility managers and maintenance crews in the application of recommended treatment guidelines, cannot be overemphasized.

In general, observing the principles for accommodating change outlined in the preservation approach (Chapter 4) is the foundation of any maintenance program.

- Continue to use a property as it was designed to be used, or find a new use that minimizes changes to character-defining features.
- Identify and retain distinguishing building qualities and characteristics.
- Maintain, protect, and repair existing character-defining features, materials, and finishes. If features are deteriorated beyond repair, replace in kind.
- Be authentic: if a feature is missing or must be removed, use accurate documentation to guide replacement.
- Respect the evolution of historic changes, fashion, taste, and use.
- Do not use maintenance methods or materials that damage significant building fabric.

Typical Conditions: Masonry

The majority of the late-19th century and early-to-mid-20th century buildings on campus have masonry walls. As with all historic materials, frequent evaluation and careful maintenance can solve minor problems before they become large, expensive repairs. The preservation approach recommended here places the emphasis on retention and repair; any necessary replacements should be made in kind, matching the existing in color, texture, size, and other visual qualities.
Masonry repairs should be performed only by those skilled in preservation solutions and techniques. Masonry repair is a complex subject. It is important to understand that different types of stone and brick have different physical properties, weights and densities, and surfaces. The masonry material, the type and extent of damage, and the proposed methods of repair should be determined before any work begins.

An examination of masonry on campus reveals damage from defective or missing flashing, open joints, and (occasionally) rising damp, as well as the effects of applying ice-melting compounds. Treatment approaches may be categorized as follows:

Cleaning
Harsh chemical cleaning, sandblasting, and high water pressure can cause significant, irreversible damage to buildings. Careful analysis of masonry properties is recommended, as is testing of proposed cleaning agents on small areas before proceeding with the work. In general, use the gentlest means possible.

Repointing
New mortar joints should match their historic counterparts in color, material, and profile. Mortars with a high percentage of Portland cement are less permeable than soft bricks and can cause deterioration by salt deposition in the masonry. Refer to building specifications, or conduct mortar analysis to determine the composition of original mortar for use in repointing.

Inappropriate Repair
The use of inappropriate materials or workmanship can alter historic appearance and damage historic fabric. This can include the use of contemporary synthetic sealants and caulking applied in lieu of mortar. These sealants and caulks, intended to keep moisture from entering a structure, can instead trap water and cause joints to fail, with adverse visual results. In some instances, sealants have failed to retain their colors, and runoff has discolored adjoining wall surfaces. In other instances, inappropriate color matching has created an unintended visual prominence for sealant joints.

Deferred Maintenance
Water penetration, efflorescence, spalled stone or terra cotta, and cracked masonry were observed in several buildings, and, in some cases, terra cotta has been painted to conceal deterioration. On exterior walls, deteriorated mortar, open joints, and settlement cracks are evidence of moisture and possible thermal differential movement. Failed or open joints in brick, limestone, terra cotta, and granite masonry, most due to normal weathering, are visible at parapets, cornices, and trim. Open joints are often found behind downspouts.

It is fair to say that many of these observations are transferable to modern panel cladding systems. The long-term performance of the panels, gaskets, and sealants may not be known as yet, but the principles of carefully examining material properties and taking appropriate measures before problems become insurmountable apply the same as for masonry structures.
Guidelines for Demolition, Additions, and New Construction

Building alterations to upgrade accessibility, energy efficiency, and information technology will likely present the most immediate challenges to UC's “mature” buildings. Generally, loosely programmed or secondary spaces may be considered as candidates for changes in use. Some of these areas are identified in the preceding paragraphs, as are several significant interiors (some of which should receive greater appreciation). Alterations and new construction should not destroy significant features or materials nor alter a building’s defining character. Additions and new work should be compatible with their context.

Demolition

Lack of appreciation due to changes in taste can lead to inappropriate alterations, neglect, or loss of buildings. Notwithstanding the master plan concepts, structures or parts of structures that contribute to the integrity of the campus should not be demolished unless it is determined that there is imminent threat to life or property. From the standpoint of sustainability, the embodied energy of these structures can provide environmental and cost-saving benefits to future generations.

Where it is determined that demolition is required, the demolition should be kept to an absolute minimum and limited to secondary areas or areas of extreme deterioration. Any demolition should be carefully planned to minimize impacts on historic features, materials, and floor plans. Historic features, elements, materials, and designs that would be altered or lost by
demolition should be thoroughly documented with photographs and measured drawings.

Additions and New Construction

As stated in Chapter 4, existing university buildings offer opportunities for creative new uses, and the multiple layers of history and aesthetics found in existing buildings can inspire creative and compatible designs for new construction. Just as signature and historic buildings vary, new construction should be individually tailored to the historic building and its site. The design of any addition or new infill should be in proportion to the size and scale of the adjoining building(s) and should take into account the character of the landscape and the precepts of the master plan.

The primary objective in planning an addition is to determine whether the building can be modified without detrimental impact to the signature or historic design, materials, and site. Some buildings cannot accept new exterior additions because of these considerations. Additions should be subordinate to the original building and should not impact or change the general perception of the building’s signature or historic design. They should be compatible with the architectural character of the signature or historic building, using matching or complementary materials without being a copy of the original building.
Chapter 6 - 43
Chapter 6

Campus Heritage Plan: Resources Under Consideration
East Campus: Dates of Building Construction

January 3, 2006

Figure 6-4

1890's
1910's
1920's
1930's
1940's
1950's
1960's
1970's
1980's
1990's
2000's
Endnotes

3 Bennett, 5.

4 Bennett, 9.

5 Bennett, 57.

6 Michael Sorkin

7 Michael Sorkin

8 Michael Sorkin

9 Michael Sorkin

Photography

All photography for Chapter 6 was supplied courtesy of the following entities:

- John Milner and Associates
- Public Library of Cincinnati and Hamilton County
- University of Cincinnati:
 - Academic Health Center Photo Services
 - Administration and Finance, Planning + Design + Construction
 - University Libraries
 - Archives & Rare Books Library
 - University Digital Collections
- University Photo Services
Administrative, Management, and Policy Recommendations

Introduction

The goal of the University of Cincinnati Campus Heritage Plan is to address the process and guidelines for implementing change. The plan’s intent is to “initiate a dialogue about the nature and practicality of continuity and change” and to ground that dialogue in the context of the campus as it has developed over time, particularly as a result of the remarkable transformation introduced by the new “signature” buildings and landscapes of the master plan. This final chapter focuses on the management issues, concerns, and objectives of the University of Cincinnati through administrative, management, and policy recommendations intended to support the vision of the university master plan and preserve UC’s unique sense of place.

Preceding chapters reviewed existing conditions and character-defining features or elements of buildings and landscapes, which are cataloged in the plan’s appendices. Potential impetuses for change were forecast on the basis of interviews and observation of the unique characteristics of each. This activity helped the planning team to better understand the degree to which change can be accommodated without sacrificing the significance of the buildings and landscapes that have brought acclaim to UC. Potential treatment recommendations were then provided as guidelines for the further development and implementation of maintenance standards based on “best practices.”

Management Issues

The potential forces for change can be summarized as a series of management issues, which the planning team identified from university representatives’ responses to the following questions:
• **New Development on Campus:** How and where should new development occur as remaining land banks and building infill locations are built out to reflect the vision of the master plan? What should happen if planned development in these areas does not occur? How should future development relate to neighborhood redevelopment along campus boundaries? How might changes fully realize the potential for a rich residential community life on campus and affect signature buildings and landscapes?

• **Removing Existing Buildings:** In the current master plan, certain buildings are considered for demolition. Should they be reconsidered for an appropriate new use? How will the university evaluate what might be lost or gained by a proposed demolition?

• **Re-Conceptualizing Existing Buildings and Open Spaces:** The new signature buildings and landscapes will mature. Programmatic needs or expectations are likely to change over time and may be out-paced by accelerating changes in technology. The users will test expectations for these facilities and the assumptions about their intended functions. What weight should be given to the intentions or opinions of the original designers as the university community evaluates and reconsiders their work? How might changes affect the public image of the university?

• **Maintaining Buildings and Landscapes:** Many of the signature buildings employ modern curtain-wall or cladding systems, the long-term performance and life expectancies of which remain uncertain. Some landscapes are identified in the master plan as requiring a high level of maintenance. How should the university maintain the unique design characteristics of the materials chosen for these buildings and landscapes, which may be impacted on by shortfalls in maintenance funding and capabilities? What guidance can the Campus Heritage Plan provide about making wise choices when faced with limited funding? Where should maintenance facilities be relocated to most effectively and efficiently care for the university’s landscapes?

• **Sustainability Initiatives:** The university is evaluating its operations as they relate to sustainability and the impact on the environment. This initiative bears directly on the previously cited management issues: How might any proposed sustainability guide lines (and potential legal mandates) impact on the maintenance or proposed alteration of signature buildings and landscapes?
The answers to these and many other questions are not so self-evident that they can be prescribed in detail for all circumstances. Indeed, each of these issues will need to be addressed specifically in the context of each campus character area. Rather than adopting a prescriptive approach that will quickly become outdated, the following management and policy recommendations suggest a process for informing good decision-making, promoting communication and teamwork, and providing tools that develop and reinforce the awareness of best practices by managers, consultants, faculty, and staff.

Accommodating Change: Management and Policy Recommendations

How should the university’s signature buildings and landscapes be considered when new development or alterations are proposed? How will change be managed? The Planning + Design + Construction department within the Division of Administration and Finance is responsible for setting the pace and direction of inevitable change. Under the leadership of the University Architect, PDC plays the pivotal stewardship role on behalf of the Board of Trustees in shaping the environment that survives into the future.

Several key factors are crucial to success in fulfilling the university’s stewardship goals:

- Oversight by experienced, trained staff with awareness of and commitment to appropriate stewardship;
• Participation of consultants who have expertise in preservation approaches, contextual design, and sustainability;

• An internal design-review process that considers stewardship issues;

• Integration of best-practice guidelines in the cyclical maintenance of historic and signature buildings and landscapes (as called for in this Campus Heritage Plan) and in planning for changes; and

• Funding levels that support effective preservation and stewardship.

Staff Oversight

The ongoing maintenance and treatment of character-defining building and landscape fabric depends on fostering an awareness of and commitment to appropriate stewardship among university decision-makers and within the existing facilities maintenance process.

Preservation Planner/Architect

It is recommended that the university establish or designate a position for a preservation planner, architect, and/or landscape architect within Planning + Design + Construction to direct and implement the guidelines in the Campus Heritage Plan in the context of the university’s strategic planning and sustainability initiatives. This person would serve as the University Architect’s liaison between maintenance staff and other decision-makers, review proposed work for compliance with conservation standards, make recommendations and serve as an institutional resource to building managers and maintenance staff, and participate in the development of cyclical maintenance plans and training programs.

Trained Personnel

Building materials conservation experience should be one consideration in the interviewing and hiring of new maintenance personnel, including supervisors and master craftspersons. Initiating a regularly recurring preservation training program for all staff levels would also instill a preservation ethic as a key component of all planning, construction, and maintenance activities.

Repairs typically handled by university maintenance staff and/or contractors who are unfamiliar with appropriate conservation practices could result in damage to historic or significant character-defining fabric and features. Specialized knowledge and skills are often required for complex work on roofs, flashings, sealants, masonry, windows, and unusual building fabric. Conservation specialists should conduct routine maintenance
procedures or monitor contractors experienced in specialized types of maintenance and conservation work. Continuous improvements should be made through development and application of recommended treatment guidelines for significant buildings and landscapes.

Consultant Participation

The participation of professional consultants who have expertise in preservation approaches, contextual design, and sustainability is recommended to supplement the expertise of Facilities Management staff in determining appropriate treatments for significant buildings and landscapes. Specialist contractors should be able to demonstrate sufficient hands-on experience and should employ conservation personnel experienced in building materials conservation and its practical application. To ensure a high quality of workmanship and materials, contract documents for treatments should list best practices and specify the appropriate qualifications of specialist firms and individuals performing the work.

Design Review Process

The University Architect, working with a design review committee experienced with the master plan, historic preservation, and stewardship issues, should be designated to respond to potential design and preservation treatment issues associated with building and landscape improvement projects. Conservation issues related to building and landscape maintenance should be subject to expedited review by qualified staff on the basis of established guidelines. The design review committee, however, would most likely exercise its advisory role when considering the issues of new development on campus or the removal of existing buildings, and in reconceptualizing existing buildings and open spaces.

When the university undertakes construction projects that are associated with historic or signature buildings and landscapes, it is recommended that the following process be followed:

- Review project-specific requirements provided by or developed in conjunction with the university;
- Consult with the Facilities Management department and building managers on building-related issues, requirements, and codes;
- Consult the landscape and building assessment and guidelines portions of this Campus Heritage Plan for information on the general
project approach and treatments for the specific building or landscape area being affected;

- Consult the treatment recommendations included in this Campus Heritage Plan for historic fabric that will be affected;

- Submit conceptual plans for the proposed work that describe the project in drawings and text, and that demonstrate how the proposed work will conform to these guidelines; include options and alternatives that have been considered, if appropriate;

- With respect to the conceptual plan, obtain the approval of the University Architect and the Campus Planning and Design department, including the design review committee as advisers in the review process; and

- Prepare construction documents for the work consistent with these guidelines and submit them to the University Architect, Planning + Design + Construction, and the design review committee for review.

Best-Practice Guidelines

The general principles of this Campus Heritage Plan encourage long-term conservation of the character of significant buildings and landscapes. A university-wide policy reinforcing the importance of appropriate stewardship would help develop an awareness of best practices by managers, consultants, faculty, and staff.

The Secretary of the Interior's Standards should be considered when planning maintenance, reuse, renovations, new construction, and other future work on UC campuses. The catalog of buildings and landscapes in this plan can be used to develop treatment guidelines and maintenance standards based on “best practices.” Together with cyclical maintenance plans, periodically refined and updated, these valuable reference resources can be shared with facility managers, maintenance staff, and design reviewers charged with implementing plan recommendations.

Cyclical Maintenance Plans

The foundation for good stewardship is a program of sound preventive maintenance, one that emphasizes the importance of routine cyclical maintenance by staff members who are trained in the methods and materials appropriate to the individual buildings and landscapes. The university already has a successful program of cyclical inspection and repair for roofs, which could well serve as the cyclical maintenance model for other systems and materials in a holistic preservation program that includes the participation of conservation specialists.

Cyclical maintenance plans for signature and historic buildings and landscapes should include schedules for each type of maintenance and should be linked to the Facilities Management department's record of the maintenance work undertaken on a year-by-year and building-by-building basis. The plans should include information about recommended products, methods, and materials, and best-practice techniques for the maintenance and repair of significant materials. As buildings and landscapes evolve, the cyclical maintenance plans and recordkeeping will become the institutional memory, transmitting crucial facility and treatment information to new managers and maintenance staff.
Implementation Strategy

Adoption of the Campus Heritage Plan as the university-wide preservation policy will promote communication, collaboration, and teamwork. First, it is recommended that the university Board of Trustees formally adopt this Campus Heritage Plan as an addition to the campus master plan and direct that it be consulted as part of the university’s maintenance, planning, and design processes. Second, enhancing knowledge of campus heritage among faculty, students, staff, administrators, and alumni through the university’s Web site and other media will play a critical role in strengthening any commitment to implement the principles, recommendations, and guidelines for reasonable and responsible stewardship included in the plan. The development of guidelines to address specific management issues in each campus character area, through the involvement of the design review committee, could also provide teaching opportunities. Third, consideration should be given to allocating resources for hiring or designating a university preservation planner/architect to facilitate implementation of the plan upon its adoption. A knowledgeable community and staff support will be essential to developing the consensus needed for funding the remaining stewardship objectives of the plan.

The Getty Campus Heritage Program and the University of Cincinnati have been partners in an initiative to make stewardship of historic and modern “signature” buildings and landscapes a major goal in the university’s strategic planning. In adopting the plan as a flexible guide to inform good decision-making, rather than a rigid rule book, the university will be taking another significant step toward fulfilling its planning goals by preserving the rich heritage and tradition of this unique academic environment.
Endnotes

1 Getty Campus Heritage Grant Application, June 6, 2006.

Photography

All photography for Chapter 7 was supplied courtesy of the following offices of the University of Cincinnati:
- Academic Health Center Photo Services
- Administration and Finance, Planning + Design + Construction
- University Libraries
 - Archives & Rare Books Library
 - University Digital Collections
- University Photo Services
Acknowledgments

We would like to thank the following individuals for their contributions to the Campus Heritage Plan.

University of Cincinnati
Division of Administration and Finance
Planning + Design + Construction
Mary Beth McGrow, AIA, LEED AP
 Associate Vice President/University Architect
Lucy Cosentino-Sinnard, BSD
 Environmental & Graphic Designer
Leonard Thomas, MS
 Project Manager, Landscape
Nnamdi Elleh, PhD
 Associate Professor of Architecture, DAAP
Crystal Sherron, BA
 Information Tech. Analyst/Designer
Gracia Frueh
 Production Designer

John Milner Associates, Inc.
Historic Preservation and
Cultural Resource Services
Charles S. Raith, AIA, LEED AP
 Principal in Charge
Peter C. Benton, AIA
 Preservation Planner
Liz Sargent, ASLA, LEED AP
 Cultural Landscape Planner
Christopher Quirk, AIA, LEED AP
 Architect
Abdulla R. Darrat
 Architectural Field Assistant
Jacky Taylor
 Architectural Historian
Appendix A

Preserving the Future of the University of Cincinnati Campus

- Michael Sorkin
Michael Sorkin

Preserving the Future of the University of Cincinnati Campus

I.

For standard-issue preservation, designation awaits the test of time. In New York and other cities, thirty years must pass before its sanction can be sought. For the National Register, the period is fifty. This passage of time is thought both to insulate discussion from the vagaries of evanescent taste – or fad - and to give the market the protective buffer of a full depreciation cycle. Indeed, an historic objection to the intervention of official preservation is that it constitutes a “taking” by government, a set of constraints on the free use of private property. While landmark designation often has the effect of adding market value, the objection is not a negligible one and can be extended to a broader argument about fixing a dynamic process at a particular moment on the basis of assumptions that themselves continue to shift. This is an issue that arises with particular force in the context of the modern city and modern architecture, with their own ingrained impetus to the constant refreshment of the new. Indeed, the debate about the validity of modernism qua style is still lively, especially in circumstances in which modern works sit in social or formal contexts with more historic elements.

Although free of the encumbrance of state administered sanction, drafting a plan for the conservation of the “heritage” of the University of Cincinnati is a particularly fraught enterprise because the heritage the plan seeks to conserve is, in the main, the product of architectural and planning interventions of the past fifteen years. To a remarkable – and unusual – degree, the University has sought boldly to put itself on the map through its patronage of modernist and post-modernist architecture, much of it from top figures in the professional avant-garde. Although this body of living work - growing from a rambunctious ideology - puts a certain conceptual strain on the idea of preservation, there are, nonetheless, a number of logical reasons to assess this body of work prospectively, in terms that parallel more traditional preservation discussions.

At least four compelling ideas make prospective landmarking logical and shape its discourse. To begin, the keys works in consideration are all the product of "star" architects - in its expansion, the university has drawn on the talents of what is clearly an “A” list of contemporary designers. These are all much honored and published, indisputably candidates for the history books – immortal via their hits - another form of preservationism. While there are many cavils with the star system in architecture, the abundant certifications lavished on this group of practitioners assures that whatever revision takes place in assessments of the quality of their work or its relative importance, their production is guaranteed to be of historical consequence for its role in the production of contemporary architectural expression, having already endured the test of contemporary taste and notoriety: these are architects and buildings sure to generate thousands of citations on Google.
In this context, the comparison with an art collection is apposite. Unlike a city in which value is created both via the quality of individual work and via the accidental consequences of the juxtaposition of different works by different actors, many of whom have little interest in architectural “quality,” the architectural additions to the Cincinnati context have, like a museum collection, been rigorously curated. And, like a museum, the curatorship bears the strong imprint of the taste of the individuals involved, in particular that of Jay Chatterjee, who has enjoyed both the confidence and the appreciation of the larger community of university decision-makers in his choices. And, these choices have received the very substantial certification of hundreds of millions of dollars worth of direct investment by the university, including the supplement that often comes as part of the cost of adventurous, high-style, architecture.

A second argument for considering plans for the conservation of this group of buildings is more urbanistic in character. In commissioning and implementing its master plan and in following its suggestions, the university proposed, in effect, to physically complete itself. By raising the idea of an end state, the question of preservation is begged in a way that is analogous to the district scale of certification in more orthodox styles of preservation. Here, the idea of ensemble predominates over questions of individual building quality. The argument is that a particular set of relationships and atmospheres characterizes the whole and that any alteration of the larger neighborhood or district would risk harming the satisfactions of a moment declared to be a local end-point or climax in development. Here, the idea of balance is privileged and alterations to or demolitions of any existing elements of fabric are judged for their effects on the whole, relegating discussions of the intrinsic quality of individual constituents to a secondary role.

A third issue for the future of these buildings is that, although all are new, there are already issues of maintenance and use that beg questions of alteration and repair. As with any historic architecture, the parameters of adaptability and re-use are central to the status of the work, helping to define exactly what is understood to be its quality and importance by raising the question of just where the point is at which a building, via alteration, is un-made. For example, most landmarking concerns itself simply with the exterior, public, face of buildings, far more seldom constraining the alteration of interior – “private” – spaces. There are, of course, exceptions to this but there remains a tacit idea that the demand for the complete preservation of a building must meet a special standard, given the higher degree of constraint implied. In the academic setting, modification is demanded both by shifting ideas about curriculum and use as well as by technological change. University growth calls for bigger assembly halls. Laboratories and scientific buildings, in particular, are subject to constant pressures for reconfiguration due to both technical innovations and the inevitable scale-creep of laboratory requirements. Moreover, any new building goes through its own “shakedown,” a period during which the design is challenged by the real parameters of use and unanticipated possibilities and failures are discovered. There are many near-term pressures for alteration that must often be deferred for practical or financial reasons.
Pressure for alteration is also likely to come from circumstances that are particular to individual buildings and from a more general "crisis" in contemporary architecture. For example, the Aronoff Center—probably the most important of the “signature” buildings on campus—is constructed in a cheap palette of materials, of sheetrock and dryvit configured complexly and already showing significant wear. This begs the question of elaborate cyclical maintenance that will undoubtedly devolve into pressure for more major alterations. The question, then, arises as to the “essence” of the building’s character, the aspects that define it and therefore describe what must be preserved to maintain it. In the case of a building in which conventional notions of inside and outside, of plan and section, and of organizational rationale, are challenged both aesthetically and ideologically, the situation is fraught. Given what will undoubtedly be demands for “minor” local alterations in the building, a policy needs to be articulated with relative alacrity and will make an excellent test case for the evolution of a more general set of protocols. In some ways, the idea of a more thorough-going alteration is less conceptually problematic given the fact that Aronoff itself is constituted via a challenge to and reworking of the three buildings previously on site. One might more easily understand the eventual introduction of another architect of Eisenman’s stature and intellect to mount a further challenge to the new ensemble, to keep the layers adding up.

In this light, it does seem important that the preservation process include the participation of the original designers themselves in formulating initial parameters for future modifications. While this risks the conceptual transgressions of the “intentional fallacy,” it is important to distinguish the difference between issues of interpretation and alteration. In literary criticism, the authority of authorship has been a lively issue for many decades and the dominant mood suggests that once a work is committed to the page (or canvas), the circumstances of its reception and interpretation are out of the author's hands and that validating a given reading in terms of authorial intent were deeply problematic. Of course, this view has never sanctioned alteration in the text itself and it is crucial to note this difference. Views of *Huck Finn* or *Las Meninas* have gone through numerous shifts but nobody proposes to modify the works to accommodate changes in taste or understanding. This is the nub of the contrast within architectural preservation, the idea that there is a differential privilege in the prospective integrity of the work itself. Given this difference, the role of intention is greatly altered: it is one of the main sources of an operational understanding of just how much latitude is conscionable in changing a building.

Another global issue that is likely to arise over the next decades in looking at the entire building stock of the university is that of sustainability. Indeed, there is no issue that is likely to have as strong an impact on architecture in general as the urgent necessity to reduce the human footprint on our overburdened planet. Architecture itself must undergo a conceptual sea-change, one that can have a bracing effect both on building operations and morphologies. Universities, as models of informed citizenship, should be leading the way in this effort and, as major builders and landlords, will certainly come under increasing pressure to assume this role. It is in some ways surprising that the
signature buildings and landscapes at the University of Cincinnati do not take greater interest in these issues. In the future they must deepen this engagement and such attention will lead to additional pressures for retrofit and modification of the campus and its buildings at every scale. The special circumstances of a campus that is coming close to build-out suggests that a new master plan – at least a component of this preservation plan – needs to be developed that will assess the environmental performance of the campus and its components and promulgate effective guidelines for both future and existing construction.

Finally, there is no question that this collection of buildings has itself become the “signature” of the university. But what precisely does this mean? To be sure, the presence of so many imageable buildings “brands” the university environment as singular, in much the same way the collegiate gothic or Georgian revival architectures function on other American campuses (and as they had earlier done here). Just as these traditional academic architectures work to establish an isomorphic relationship between style and meaning, so Cincinnati’s collection must mark something in particular about its academic character and cohesion. This message has several layers. To begin, there is an obvious identification with experiment and with contemporary thinking, with the implication that buildings reflect a larger attitude about knowledge and excellence. This is a logic that does not appeal to all universities – many of which prefer the comforting continuation of “traditional” building - and marks Cincinnati as exceptional. To be sure, the indifferent quality of the pre-existing campus offered a somewhat liberated opportunity for adventure, given the its own lack of a coherent image.

That the new crop of buildings also differs considerably from each other might also be said to advance an idea about the role of diversity in securing excellence and, by extension, an idea about knowledge itself. Embedded in the history of campus construction is a vision of the liberal arts that foregrounds both ideas of continuity and change, of the compatibility of new knowledge with old as well as of a bracing association the excitement and tolerance of free inquiry. The fact that several of the buildings have been “controversial” only burnishes the idea of an open-minded institution, willing to take risks for the best and secure in the idea that the university is a place in which received orthodoxies are subjected to challenge. And, not to be overly reductive, these buildings promote the idea of the university as a manufactory of modernity. That this modernity is hybrid in its expression affirms the currency of the university’s view.

However, these values still beg a number of questions. As with virtually any collection of buildings or objects that have been produced under consistent curatorship, there remains the question of better and worse, of whether one should automatically assume parity in the quality of all the buildings because of the claims of the “collection”. The Hargreaves plan that initiated the building boom is itself a modernist artifact and should not escape interrogation. Because of its innovations, it demands to be judged on the basis of its own categories. Indeed, the value of the University’s larger building exercise must be judged for the quality of its synthesis between traditional spatial concepts – centers, quadrangles,
lawns, etc. - and more modernist spatial ideas of flow, force, disjunction, etc, as well as a formal and material palette that is often markedly different from traditional defaults.

The conflict between tradition and modernity is not so sharply drawn on the Cincinnati campus as it might be in other contexts. That the store of “traditional” buildings – all revivalist not originary – is, with a few exceptions, no great shakes removes a certain burden. The shift to modernism pre-dates the wave of signature buildings that were produced in response to the Hargreaves plan. Most of the preceding work added to the campus during the building boom of the sixties and seventies is dreadful and, although it forms part of the campus heritage, can scarcely be recommended for preservation on any but economic grounds, although there may well be reserves of affection for the “four-headed monster” or the prairie-style faculty club.

But, while there are a number of buildings that might be removed and not be missed, other issues are involved. Whatever else they represent, universities (and cities) are also the embodiments of tradition and memory. These attach themselves to architecture in many ways other than via the test of design quality: buildings and spaces can be beloved – or simply important - for many reasons: the site of a massacre can be as crucial to preserve as the site of a scientific discovery or a first kiss. Any preservation scheme must somehow inventory experiential qualities of space unrelated to aesthetic issues. In compiling a plan for the future of the campus, a strategy must be generated for assessing its residue of meanings from a number of perspectives, including events, traditions, antiquity, utility, and all non-artistic content, particularly any that reinforces the sense of the campus as a place of social cohesion, civility, and consistent purpose.

The importance of an architectural object obviously exceeds its provenance. In the case of contemporary architecture and even more especially of a collection of buildings whose architects all continue to practice, it is legitimate and necessary to evaluate the quality of the building itself. Clearly, the discussion of preservation at Cincinnati is not about works by Brunelleschi or, for that matter, Frank Lloyd Wright, works in oeuvres that will not grow and which virtually every observer agrees are the product of genius. That jury is – and must – still be out for Cincinnati’s projects and it is clear, even now, that the quality of these works is uneven, ranging from brilliant to dated.

The following comments, then, represent a single critic’s assessment of a series of recently built projects, to be added to an abundance of other analyses that will be part of the accumulated weight of opinion that will ultimately weigh on decisions concerning the preservation and transformation of these works in the future. Each of these works is a player in the realization of the master plan developed by George Hargreaves and it is logical to begin with an assessment of the plan itself, which will continue to function not simply as a guiding instrument for the deployment of new construction but which is also a armature for assessing the meaning and success of work executed under its aegis.
II.

The Hargreaves Plan And Spaces

As a basic strategic document the plan is very good. Its effectiveness is clear in the rapid development of the campus according to its principles. The plan deals successfully with the generative rotational imperatives of the campus and its surroundings and identifies the geometric lines of force that underlie both its existing campus order and the desire lines that emerge from the combination of morphology and use. The plan is also successful in delineating neighborhoods or villages that are defined by the interplay of open-space and built enclosure. Particularly impressive is the way in which sports fields and facilities are integrated into this texture of rotated quadrangles without over-prejudice of scale. Indeed, the tight clustering of new buildings around Nippert Stadium – the campus cathedral – is remarkably urbane, even wry. The finest single formal outcome of the plan is the “Main Street” group, an unusually refined collaboration between a group of designers in which their give and take over the realization of this portion of the master plan has produced both outstanding individual buildings and a compelling sense of harmony in form, materials, function, and mood.

The plan also does well in its efforts to give a consistent spatialization to the interstices of the campus – the sites between existing buildings – and recognizes the difficult and varied conditions of the campus edges. Problems remain, in particular, on the north and east edges of the campus where a surfeit of parking structures and blurry green spaces create a ragged feeling. The implementation of the plan also fails to solve the thorny problem of linking the east and west campuses, which is made difficult by a knot of large streets, by issues of displaced adjacency, and by concentrated parking. However, as a general armature, the master plan is quite successful as is evident from most of the construction that it has influenced. In particular, the articulation of a linked series of spaces – the “emerald necklace”, “string of pearls”, or “chain of green” – has given the university a rich formal distributor that most effectively creates both individual spaces and the means of circulating between and among them.

The generative principles behind the strategies of place-making, infill, and circulation embodied in the plan might be said to be fairly common parlance, clear continuations of campus and urban design ideas with wide currency. More idiosyncratic is the specific formal expression of the public green and plaza spaces that have been designed by the Hargreaves office. No less than any of the buildings his plan has sited and inspired, these spaces clearly bear a specific signature and demand artistic respect. Hargreaves’ work is strongly geometrical, abstract rather than “naturalistic,” and highly episodic. His repertoire of mounds, berms, paths, mono-cultural planting, pylons and architectural incidents, and light surrealism has struck me, on repeated visits, as strongly legible but as more successful in two dimensions than three. In part, this is surely due to the relative youth of much of the planting. It is, however, of a conceptual piece with a certain new wave in landscape design bound to the cohort and period of which Hargreaves is such an exemplary representative.
Pressures on these elements are likely to come from a number of directions. There will surely be issues of maintenance for sculpted earthen – and other - elements of the work which are already showing signs of deterioration. There will be functional claims on spaces that find themselves “reprogrammed” as students and community members impose uses – from sports to romance – that these spaces do not specifically predict. There will surely be moves to a richer palette of plant materials and to more diverse, less schematic, mixes of species. And, in line with larger environmental imperatives, these will surely be pressures on the landscape to do more work – more visibly – in bioremediation, carbon sequestration, water management, biodiversity and synergy, and other issues that will shape the idea of a productive landscape, rich in specific functionality.

These pressures notwithstanding, a key role of a preservation plan must be to establish and insist upon an artistic parity between landscape and building elements, a conceptualization that reinforces the sense of mutual invention between the two. The careful identification of the spaces and elements of the interventions being undertaken in this preservation plan is clearly central to any on-going efforts to integrate open space elements into the roster of artifacts to be “listed” for protective attention. An interesting conceptual wrinkle is added by the fact that a landscape always contains the “seeds” of its own transformation. Plants and trees grow and the spatial character of the spaces they help define continually shifts.

Aronoff Center

As suggested earlier, if one building in the recent spate of construction were to be singled out for special importance, it would, for me, be Peter Eisenman’s Aronoff Center. This is easily the most formally inventive structure on campus and, given Eisenman’s relatively small output, likely to be a relative rarity in the future. It is a challenging building but interesting for the way in which it wears its generative methodology so conspicuously on its sleeve. Because of its idiosyncrasy and low-rent materials, it is also likely to be one of the thorniest to integrate into a systematic preservation regime and one of the most urgent.

CCM

Like Aronoff, the CCM is consequential both for the intrinsic quality of its design and as an exemplar of the way in which new architectural and spatial elements can bring disparate existing buildings into satisfying ensemble. The project has both great elegance and clarity, marked by strong spatial generosity and subtle integration into existing topography. The relative simplicity of form and detail in the Cobb project as well as the diversity of the ensemble as a whole both invites future interventions and potentially modulate their effects, setting their scale as small. It was my impression that this complex is particularly well-liked on campus although, personally, I find (as I often do with this architect’s work) the Cobb elements to be somewhat over-rated and a little bland. However, certain spaces – such as the convulsive bubinga-wood auditorium – invite special designation.
Lindner Center
This building is likely to be one of the easiest to preserve, both conceptually and physically. The resistant simplicity of its parti, the sacral nature of the commemorative installation in its atrium, and the beefy, minimally detailed, structural system all conspire to assure durability. Its original planning clearly takes into account the possibility of modification of the perimeter office spaces, which offer appropriately protective flexibility. This is not a great work but a very legible one.

CRC/Dormitory/Classrooms
This huge, complex, and ambitious project is easily the most dramatic of the signature additions to the campus and it is highly successful formally, contextually, and programmatically. Despite its 350 thousand square feet, complex blending of its five component pieces, and intricate patterns of use, it functions very well and blends with great aplomb into the larger athletic, Main Street, and campus ensembles in which it plays such a pivotal role.

Preserving the CRC raises many issues similar to those confronted by Aronoff. Many of its materials and finishes – as well as its expressive joinery - are sure to raise durability issues and its social and physical complexity and very high level of use are sure to give rise to a variety of maintenance problems that may compromise its visual integrity. And, the programmatic richness that gives the building so much of its character may also prove to be a source of stress in the future. While basic functions – athletics, dining, classrooms, dorm – are durable, the particular forms that they take – such as the multiple-station cafeteria – reflect current preferences that are likely to shift over the life of the building.

This pressure for re-conceptualization applies both to spaces that are highly specific and to others that more loosely programmed. Most conspicuous in this latter category is the large, covered, “interior plaza” on the eastern side of the building, which is dark and not entirely inviting, particularly in winter weather. It is easy to imagine pressure to enclose or otherwise refine this space although it is also easy to imagine that this might be done successfully, particularly with the collaboration of the original architect.

There are also several design decisions that are crucial to the building’s character that may produce pressure for alteration. While on campus, I heard a number of complaints about the slit-like fenestration of the dorm, which many students seem to find a harsh victory of form over function. The dark coloration of the main mass of the building and the moody lighting levels of much of the exercise areas produce a sobriety that risks lapsing into the somber. These, however, are relatively minor cavils in a work of great richness and invention which, as suggested above, succeeds extremely well both autonomously and in context.
Edwards Center
Although falling under the rubric of a “signature” building, this is an undistinguished, if functional, work to which it is difficult to imagine much sentiment becoming attached. More corporate than campus.

Engineering Research Center
While I have never had any particular affinity for the work of Michael Graves, this is clearly one of his best buildings. It succeeds at everything its aspirational classicism promises. The ERC is measured and balanced but not overbearing in its symmetries, urbanely sited, materially rich, and very substantial in feeling, both inside and out. It functions as both centerpiece and hinge, a fine marker of the anxiety of transition from the brick Georgian default of the early campus to the scale and formal configuration of the signature modernities of the recent building regime. I suspect that a survey of the campus population would yield a strong sense of identification and respect for this building, which, in the straightforwardness and clarity of its configuration and detail, makes the task of understanding the “package” of its preservation unusually easy.

Tangeman Center
Like Aronoff and the CCM, the Tangeman center sets the stage for a conversation about preservation by its own incorporation of a heavily modified existing structure within the larger framework it establishes. The building functions well as an end piece on the highly successful Main Street and rounds out the rich sequence of spaces and programs for student life along it. As a piece of architecture, it is somewhat hulking and crudely configured. It does, however, have some very strong moments in its generous interior, particularly the sweeping, curved, wall of glass in its main space, which evokes the pleasures of an ocean liner’s deck.

Steger Center
A beautifully proportioned and urbane building that is literally and figuratively central in creating the form and atmosphere of Main Street. Although it reflects and extends the materiality of its new neighbors – the Tangeman Center and the CRC complex – its more modest scale and careful modulation as its steps down the sloping street adds richness and texture to a context of what could have been overwhelming bulk. Configured as a loft space, the building interiors are intrinsically flexible – designed to be battered about. The building is also particularly artful in setting the rear mews that parallels Main Street, which – by providing a sequence of restful spaces, a more intimate circulation spine, and a suture with the existing campus fabric - must be rated as one of the best spatial outcomes of the current plan.

University Pavilion
This relative sleeper of a building is one of the finest in the new crop. Although volumetrically simple, the building elevations are varied in relation to context and orientation and detailing is careful and elegant, both inside and out. Finishes, too, are of good quality and the building is at once airy and solid, with a dignified demeanor that is both serious and open. Unlike some of the edgier items on the signature list, the University Pavilion is clearly comfortable with its own sense of completion, a sense that deserves respect.
Vontz Center

Vontz is one of Frank Gehry’s most serene works and, in general, a great success. As a laboratory, it is well designed to permit periodic reconfiguration and its plan and section are models of clarity. Much as the building separates “served” and “servant” spaces, so too does it isolate “designed” and “flexible” spaces, something that greatly clarifies potential preservation issues by isolating the labs from the stair, circulation, exhibit, and auditorium spaces that bear the master’s most distinct imprint. Maintenance of the buildings exterior, however, seems likely to be an issue as the fenestration that projects from the panelized brick facades is already leaking, as is skylight glazing. In a building in which this detail is a signature, it is important that any modification or repair be done as consistently and invisibly as possible.

Medical Complex

Construction of the Eden Quad, Medical Sciences Atrium, and CARE building should have a major impact in clarifying the access to and identity of the somewhat inchoate mass of the Medical Center megastructure. While most of its buildings are not of great distinction, their aggregation is nevertheless impressive. In future planning, there is potential for the examination of a condition in which the field of figure and ground is reversed to produce an interiorized set of circulation nodes and links that parallels the exterior system on the West Campus. It seems that the medical center will evolve in a way that will demand a combined system of connection, sometimes predominantly interior, sometimes exterior. The design of this complex armature will be complex, fascinating, and challenging and will offer opportunities for interesting translations of the principles of the Hargreaves plan.
III.

In many ways, the preparation of this plan is straightforward. Because of what is clearly a broad consensus on campus, among the public, and in the critical community about the tremendous achievement of this enormous transformation, the basic value of the remade campus seems well established. And, the formal and technical issues surrounding the preservation of the spaces and buildings produced do not seem to differ in any intrinsic way from more routine questions of preservation. If there is a single thorny issue that confronts future planning, it is that of the mechanism by which the preservation of the campus is to be pursued and assured. Because campus preservation is almost entirely a matter of internal regulation – no outside body is available to protect the structures and spaces in question – the University must produce both a stable and responsive authority to oversee the protection and enhancement of this resource and a set of clear standards and protocols that enjoy the consent of the broader campus community. The task of a preservation plan is – *inter alia* – to assure that the work of visionary leaders does not require visionary leadership to maintain.

The richness of the university’s collection of buildings and landscapes, however, should in no way signal the end to its growth. Many tasks remain and these must be accomplished in clear harmony with what has already been done. As suggested, a general “greening” of the campus to bring it up to the highest environmental standards is an important piece of this. Solving the failed elision of the campuses requires commitment and ingenuity. Many older buildings too require modification and replacement. New uses will arrive. Residential life will be augmented. And, the university has the opportunity to introduce a new class of beautiful architectural object as it seeks the many small and lapidary objects that will add to and extend the marvelous spirit it has so successfully achieved.
Appendix B

Buildings: Character Defining Features and Conditions Assessment
An artful, asymmetrical arrangement of Cartesian planes and solids creates an overall impression of horizontality and solidity. Perceived voids at large areas of glazing provide an indoor-outdoor connection and accentuate the strength of the solid forms.

A long concrete retaining wall faces south and supports a plaza at the entry level. The grassy hill falls across the wall, emphasizing the geometry of the building in juxtaposition to the natural terrain of this corner of Burnet Woods.

The upper floors of the west-facing walls are clad in a monochromatic soft red brick. Openings with brick returns on the third floor hold paired windows with aluminum frames or square exhaust vents. The geometric composition of solids and voids is typical of this architectural style.
Appendix B 2

The first floor of the building on the west and south is clad with limestone. The joint pattern creates simple, large squares. The plane of the stone is recessed behind the brick wall above. Concrete structural elements such as the floor, support columns, and stairs were designed to be visible and are an integral part of the design. Honest use of materials and forms reinforce the geometric composition.

Fully glazed north exterior wall

A cantilevered cast-concrete balcony runs along the full length of the north elevation. A simple steel pipe rail is attached to the face of the balcony. This long, unbroken balcony provides horizontal emphasis.

Exposed concrete structure

Stone base

Concrete structural elements such as the floor, support columns, and stairs were designed to be visible and are an integral part of the design. Honest use of materials and forms reinforce the geometric composition.

Fully glazed north exterior wall

Concrete structural elements such as the floor, support columns, and stairs were designed to be visible and are an integral part of the design. Honest use of materials and forms reinforce the geometric composition.

Building entry

Exposed concrete structure

Stone base

Concrete structural elements such as the floor, support columns, and stairs were designed to be visible and are an integral part of the design. Honest use of materials and forms reinforce the geometric composition.

Jalousie windows

Jalousie windows in aluminum frames appear in vertical bands at various locations around the building, often in an asymmetrical arrangement. These windows allow for natural ventilation. The pattern created by the frame provides a contrast to the other large planes of glazing.

Glass wall and stair

At the southeast corner, a floating concrete exit stair is clearly visible behind a three-story glass wall. The pieces of glass used in this composition are unusually large and are broken only by horizontal frame lines. The verticality of this element contrasts with the overall horizontality of the building mass and the entrance canopy.

An asymmetrical canopy is supported by round concrete columns. A glass curtain wall behind the columns gives an open view into the entry lobby. Simple materials are used in an honest expression of structural systems.

Jalousie windows

The balcony appears to have been cut off or modified at the west end. It is unclear whether this is a repair.
Alms Building

Conditions (cont.)

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Structure</th>
<th>Structure</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealant Failure</td>
<td>Concrete retaining wall is cracked.</td>
<td>Cast-in-place concrete header at window frame is damaged. Appears to be from movement of the large window below. Requires closer investigation.</td>
<td>Evidence of grade change or rising damp at concrete retaining wall.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone damaged at grade by wheels of lawnmower.</td>
<td>Vents have been added to the retaining wall, presumably for mechanical space inside. The interior of this space was not accessed.</td>
</tr>
</tbody>
</table>
Appendix B

Armory Fieldhouse
James E. Allen, 1955

Over time, new structures have been constructed adjacent and connected to the field house. The Shoemaker Center butts against the south side, the Campus Recreation Center adjoins on the west, and the CRC Student Residence Hall obscures the north face (which formerly was a glass-fronted lobby), where a service court has been constructed.

Planters and canopy at entrance

A cast-concrete planter forms the base of the building and appears to be part of a renovation. A single run of stairs with steel-pipe handrails leads to the entry level. A slender metal-clad canopy is cantilevered along the east wall of the building.

Large red brick volumes

Reflecting its intended use as an arena, this large, red brick rectangular volume is broken at ground level by a single-story flanking projection.

Glass block

Large bands of glass block run the length of the east and west walls of the main volume. These translucent panels would have provided natural illumination to the court area. Their arrangement and form help break the large mass of the building.
Armory Fieldhouse

Vertical metal cladding

At the side of the structure facing the CRC Student Residence Hall, the building has been covered with vertical metal siding.

Conditions

<table>
<thead>
<tr>
<th>ADA Ramp</th>
<th>Broken glass blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A substantial wood ramp has been added to the east side of the building. The material, detailing, and execution appear temporary and do not fit the campus or the design of the fieldhouse.</td>
<td>At various locations around the building, glass blocks have broken and need replacement.</td>
</tr>
</tbody>
</table>
When viewed from the north, the structure appears to be buried in the rolling topography of the former woodland. At this prominent public corner, the building shrinks back from making any public statement.

Through the use of form, grid, and color, the structure gives the appearance of an assembly of complex geometrical shapes.

Incised in the synthetic stucco, grids are used to break up large planes. The grids change in scale and orientation and are part of the designer’s efforts to create geometrical illusions. Elsewhere, at window mullions, another grid breaks a plane of glass into smaller shapes.
Appendix B

Complex massing (cont.)

Vertical wall planes are canted to lean out or back into the building. This use of leaning planes, similar to those employed by set designers, fools the eye into the perception that the building is slipping.

Buttresses

At the top of the lawn on the north side of the structure, large stucco-covered planes appear to cut through the main mass of the building. These “buttresses” are arranged in an irregular rhythm.
Aronoff Center

Monumental stair

The long exterior stair across the face of Clifton Court to Crosley Hall extends the imagery and materials of the Aronoff Center.

Building entry

The interior of the building is composed of rooms and spaces accessed and viewed from the continuation of the monumental stair into the interior.

Colored window frames

The entry doors are recessed deep under the overhanging mass of the end of the building. This location is not readily apparent to a first-time user.

A thin-line aluminum storefront system is used to glaze openings in the structure. The system is painted either red or blue. In some instances, the frame color changes at a diagonal line across the face of the window. The lack of flashings and weeps allows water penetration of the window system.

Synthetic stucco cladding

Synthetic stucco was chosen as the primary cladding material for the structure. This impermanent material gives a lightness to the structure that contradicts the large forms and leaning walls.

Conditions

Stucco damage

Synthetic stucco shows damage on all sides of the building. The mesh is exposed, punctures reveal insulation, and large cracks appear in the walls. This damage allows water into this fragile cladding system.

Stucco fading

The color of the synthetic stucco is fading. This makes it difficult to touch up any painted areas. The strength of the colors contributes to the design of the structure.

Biological growth

The shaded location and north orientation of the building have contributed to significant biological growth. Streaks of growth are visible.
The five-part composition of central pavilion and flanking wings creates a formal terminus to the Baldwin Quad axis.

The prominent formal temple-fronted pavilion features Ionic columns in antis. This strong composition confirms the building’s prominence and importance.

An unbroken run of stone stairs across the entire front of the main entrance to the building welcomes students approaching from all directions. This formal feature begins the entry procession from the life of the quad to the academic functions of the building.
Brick and terra-cotta cornice

A strong brick and terra-cotta cornice caps the structure. Heavily detailed, the terra cotta features classical egg-and-dart molding. The variation of material in contrasting bands adds visual interest.

Windows

The use of six-over-six double-hung windows is typical of classical revival architecture.

Terra-cotta trim

Terra cotta is used at the belt course, water table, windows, and as decorative medallions in the brick walls. Heavily cast detailing provides deep shadow and texture to the large planes of the exterior.

Brick bond pattern

Great attention was given to the use of brick bond on the building. Large planes of running bond are broken by bands of Flemish bond pattern.

Conditions

Maintenance

Much of the terra cotta has been painted. The paint is failing by chalking and in many locations streaks of chalk are washing down the building. The reason for painting the terra cotta is unclear. The color of the paint does not appear to match the color of the terra cotta.

Cracking at terra cotta

In various locations, the terra cotta is cracking and breaking. Pieces have fallen out and patches are evident. This could be the reason that the university chose to paint the material.

Sealant Failure

Repairs to the sealed joints of the building can be seen in various locations. The color of sealant does not blend well with the mortar or terra cotta.

Maintenance

Rubber strips have been placed over the butt joints in the terra cotta. The material itself is becoming brittle. It is unclear why this solution was chosen. The strips are prominent and interrupt the lines of sills and other running trim.
A new arched ramp has been designed to work with curved walls in front of the building. While ramps are not usually recommended for primary facades, the incorporation of the ramp into a symmetrical landscape that complements the façade has worked nicely.

The six-over-six windows appear to be replacements, perhaps of fiberglass. The muntin arrangement and sight lines of frames and sashes are at home in this classical revival style.

At column bases and elsewhere on the building, open mortar joints have allowed water to penetrate. Spalling of the face of the terra cotta is visible at many of these open joints.

Spot repairs are visible throughout the terra cotta. The original material may have inherent flaws that led to the observed failure.

Cracks in lintels above right pavilion windows can be seen from the ground.
Murals located in the Engineering Library were painted by Frances Faig in 1911 (student of Frank Duveneck). The murals were restored in 2004 during the Engineering Library renovation.
Appendix B

Blegen Library

Burgess & Niple Limited, Architects, interior redesign 1980

Deco with classical decoration

The front face of the building is primarily stone with some brick accents. The sides and rear are almost completely brick above a cut stone base.

The main entry to the building is at the fourth floor. At the entry, an areaway or moat separates the building from the front lawn. A bridge crosses the areaway to access the front door. At the top of the areaway, a concrete balustrade forms the guardrail. The passage from the hilltop across the areaway and into the building imbues a sense of psychological importance to the structure.

The large building is designed as a large rectangular volume. There is a tower on the rear, east side. From the east, the building has great presence.

All sides of the structure are composed in a symmetrical manner. The main entry is on a formal axis with Straight Street.
Stone cornice

The large stone cornice is simple in form but provides a strong cap to the building and contributes to the sense of importance conveyed by the architecture.

Windows in the north and south walls

Windows at the upper two floors on the north and south are stacked vertically and joined by a band of stone trim. Metal bas-relief panels are located at the interstitial spaces. Window muntins are of varying thickness to create a hierarchical pattern.

Bronze work

The use of decorative bronze work at the entry is similar to that used in screens at the second-floor windows. Here, Minerva stands above a series of bas-reliefs that tell the story of book making. (Bennett)

Bronze grilles at windows on the west façade feature printer’s marks from important bookmakers. (Bennett)

Bronze work (cont.)

There are two large, bronze light pylons at the front entry. They are mounted on stone plinths. A lantern at the top of a thick column provides the light. These pylons are unique and are designed to complement the other imagery found on the building. The use of pigtail bulbs inside the lantern lessens the image of strength.

Bas relief stone panels

Bas-relief stone panels are located below windows and give the appearance of balconies on the west façade. The figures represent great thinkers and philosophers from Eastern and Western intellectual history. (Bennett)

Grand stair

The original open stair between the entry level and the reading room remains.

Reading room

The large volume of the reading room remains intact. Light fixtures and moldings work with the large side windows to give the double-height room an air of importance.
Blegen Library

Reading room

A bronze screen with doors serves as an entrance to the reading room. Stylized owls and other decorative motifs are incorporated into the screen.

Display cases

In the main lobby, a bulletin board and display cases remain. Parchment colored marble and bronze detailing can be found at each of these.

Corridor wainscot

At the first floor, marble wainscot and door surrounds remain in the main hall.

Plaster moldings

In the corridors and open stairs of the interior as well as the library reading room, decorative plaster moldings remain.

Light fixtures

Interior lighting fixtures continue the decorative themes established on the exterior. These octagonal fixtures are strong elements of the interior design.

Conditions

Site-related moisture

During our observation, erosion control fabric was being installed on the south side of the building. With the structure built into the hillside, there appears to be difficulty removing water from the areaway and around the structure.

Cornice flashing

At various locations, the flashing on top of the projecting stone cornice is raised.

Color of pointing

Areas of joints in the stone have been repaired using a white product. This appears from a distance to be sealant, but it could be white mortar. Pointing of vertical surfaces with sealant is not structurally sound. The color of the materials stands out against the tan stone plane.
Appendix B

Blegen Library

Conditions (cont.)

<table>
<thead>
<tr>
<th>Stone damage</th>
<th>Stone staining</th>
<th>Displacement at stone wall to areaway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone damage is visible directly above steam vents in the areaway. The damage appears localized at the edge of the steam, presumably where steam can freeze and cause stone deterioration.</td>
<td>Staining of stone is visible in various locations on the building. There are two types of staining. The black stains at the cornice are biological growth related to moisture.</td>
<td>Elsewhere, water running off decorative bronze work has resulted in verdigris staining of the stone.</td>
</tr>
<tr>
<td>This exposed stone wall is particularly vulnerable to freeze-thaw cycles. As a result, stone units are displaced and joints have been opened to allow water direct entry. In some areas, sealant has been used in an attempt to stop water infiltration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displacement (cont.)

<table>
<thead>
<tr>
<th>Tree locations</th>
<th>Light bulbs</th>
<th>Bronze condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneath one pilaster, bricks have been inserted to help support stone. Concealed behind a thick hedge, this damage is not readily apparent. The possibility of pieces of the wall falling into the areaway should be considered and repairs made to prevent further damage to the stone.</td>
<td>A single row of trees has been planted on line with the main entry to the building. The trees obscure the axial view to the building entrance from Straight Street.</td>
<td>All of the bronze detailing on the exterior of the building needs to be conserved.</td>
</tr>
<tr>
<td>Pigtail® fluorescent light bulbs have been placed in decorative light fixtures on the interior and exterior of the building. Where bulbs were meant to be exposed, decorative incandescent bulbs should be used.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The imposing symmetrical façade creates one end of McMicken Quad. The five-part composition recalls the classical design of earlier campus buildings.

Centered in the long façade is a detailed entry portal with bronze panels and bas relief above. The straight line of the parapet is broken by a slight arch above the portal.

Tall, arched, head windows provide vertical emphasis on this long horizontal building.
Braunstein Hall

Windows

Windows are grouped into triples, clustered within stone surrounds. These blocks give rhythm to the long façade.

Parapet cap

Instead of the heavy stone cornice seen on many of the earlier campus buildings, here a thin band of stone is used as a cap. The roof is not visible beyond. This streamlined treatment de-emphasizes the top of the building and focuses attention on the window units.

Brick pattern

The design employs variations of brick bond. Flemish bond is used in some areas while rows of alternating headers and stretchers are placed every six rows in a field of running bond in others. Running bond was used for the addition.

Stone detailing

Stone is employed at the base, the belt courses, and the wall cap. The base includes deeply cut circle-in-a-circle.

Stone detailing (cont.)

Decorative stone octagons with the names of great scientists carved in the center are located above each of the major window units on the south main façade.

Entrance foyer

The original marble entrance foyer remains intact including light fixture and decorative vents at the cornice.

Building directory

An original bronze building directory is located on the wall in the corridor.
An addition was made to the east and northeast. The detailing, scale, and setback are all respectful of the original design.

At the rear, a terrace has been constructed over a loading dock to connect to the Geology-Physics building.

The new construction cuts into the tops of the round arched windows.

The prominent bronze entry has been reconfigured using eight-panel glazed doors in a bronze color. A new frame has been inserted in the original to accommodate the stock door size.

Windows in the stone surrounds have been replaced with new units featuring dark frames and sashes.

Some windows have been infilled with stone.

Along the wall adjacent to the accessible ramp, salts have damaged the limestone. Elsewhere, the base has been chipped and joints show spalling at edges of the stone.

At the stone base, mortar loss has been repaired with sealant. Vertical joints should be repointed with mortar in a color selected to approximate the original.
Braunstein Hall

Original bronze doors.
The west and east sides of the building have a vertical window band centered in a modulated brick wall. The thin band and brick piers accentuate the verticality of the structure.

A low podium sets the base of the building above the adjacent sidewalk and planting bed. A short run of steps provides access to the entrance landing.

The large curtain wall faces of the structure are composed of dark window frames with dark interstitial panels between. Separated by aluminum ribs, the windows recede and emphasize the verticality of the ribs.
Calhoun Hall

Seating area along Calhoun Street

Though the structure parallels Calhoun Street, with only a shallow setback from the public right-of-way, a recessed seating area—with built-in seating and a line of trees—buffers traffic from the dormitory.

Detailing of aluminum

The aluminum ribs used in the curtain wall extend above and below the main plane of the wall. At the top, they provide a modern interpretation of the Gothic style characteristic of adjacent buildings.

Material choice

The use of red brick helps make the building compatible with prior buildings in the area including Memorial Hall.

Conditions

Sealant failure

At joints in the cap of the podium, sealant has failed and water has washed down the face of the brick leaving a white deposit.

Dark screens

Window screens have been replaced on an irregular basis with screens that are darker than the originals. The mix of screen colors breaks up the original design intent of streamlined vertical bands between aluminum ribs.
At the corner of the garage, concrete banding aligned with the parking decks wraps around a glazed stair tower. One of the bands extends away from the stair tower and connects to a freestanding concrete column.

By using tan brick at the first three levels and leaving the cast-in-place concrete exposed at the upper levels, the designer has broken up the large mass of the garage structure.

The parking decks are fully expressed on the exterior of the garage, creating a horizontal banding pattern against the dark shade of the open space between.

White sealant has been used to repair cracking masonry.
Campus Green Drive Garage

Conditions (cont.)

Diagonal cracking

Diagonal cracking of masonry can be seen above the opening to the garage. The lintel does not appear to be strong enough to support the long span.

The bottom of windows are either etched from water and dirt or laminated glass is discoloring.
As MainStreet arcs around the side of the CRC, steps transition between the ramp of the street and the entry grades of the CRC.

The end of the CRC that faces Nippert Stadium has large boxy forms. While the CRC forms a wall of the stadium and gives form to that space, the boxy forms read as the ends of trusses and give the impression that the CRC has turned its back on the stadium.

The pool is located on the Campus Green side of the structure. The use of large panes of glass provides visual access to the pool from the exterior and the CRC.
A large, open-air plaza is located between the pool and the workout areas. It is covered by the folded roof which has been pierced with round holes to allow some daylight to enter. The overall feeling is one of dark enclosure. Views through the pool area to the outside help provide orientation.

By the use of dark ceilings and large overhangs, the definition between indoor and outdoor spaces is blurred. The overall impression of covered spaces in the building is one of dark shade.

Wedge-shaped supports are clad in large horizontal metal panels, giving an impression of solidity and support. Structural trusses are wrapped in vertical panels similar to the main walls of the building. These structural elements become sculptural forms.

Facing the Sigma Sigma Commons, a folded roof with large overhang houses the pool. Large pylons support the roof.

The walls of the structure are composed of metal-framed-storefront and vertical-metal-panel systems. The ground-level storefront is topped by a solid wall of vertical panels.

Attention has been given to how materials are attached and structural elements are joined together. An example of this is the handrail at the freestanding exterior stair.

At the opening at south end of the CRC, over the stadium, a joint between concrete and metal panels is open.
The building is set back from Albert Sabin Way at the rear of Levine Park. It is dwarfed by the adjacent Medical Sciences Building.

Access

Exposed structural frame

Corner volumes

On the north side, concrete beams and columns screen the windows at the major wall plane beyond.

At a corner, skewed cubes cantilever from the building face at 45-degree angles. The cubes are sheathed in glass, contrasting the more solid pre-cast supporting wall.
Cardiovascular Research Center

Entrance canopy

- A concrete entrance canopy supported by a single concrete pier protects the entry doors to the atrium. The entrance is located in a recess adjacent to the Medical Sciences Building.

Pre-cast concrete

- The exterior of the structure is covered in a light-colored pre-cast system.

Multi-story atrium

- Concrete bridges traverse the center of the atrium. The bridges and the balcony circulation system are protected by perforated metal guardrails.

Multi-story atrium (cont.)

Conditions

- **Damage to pre-cast**
 - At the elevator towers, glazed red brick is used to infill between concrete structural members.

- **Rust**
 - At the first floor, corners of the pre-cast sill have been broken. Water is entering the structure through an open joint resulting from the damage.

- **Rust**
 - Water is working through joints in the concrete under the second-floor deck on the exterior. Reinforcing steel set close to the concrete surface is rusting and causing spalling.
The building is “engaged” with the topography of the ravine. Doors and windows open to the exterior on multiple grade levels. The sinuous fit accommodates multiple components including McMicken Commons, CCM Plaza, and the Theater Lobby.

The exterior “public side” is heavily planted—raised beds with seatwalls, ravine slopes, etc.—creating a green buffer around the building.

The large open plaza provides for mingling of pedestrian and vehicular traffic. The brick herringbone with precast banding in a radial pattern breaks the large paved area down to a human scale.

The Corbett Theater was constructed in 1972 of cast concrete and copper. While most of the original building is left exposed, new red brick walls wrap around the theater to create a series of small courtyard gardens, a contrast between old and new.
Connection between these spaces is accomplished by the use of intersecting multi-story lobbies.

Window units are composed as horizontal bands in aluminum or stainless steel framing. Continuous horizontal mullions not broken by verticals echo the pattern of the brick banding.

Brick wall cladding in warm reds and browns is broken by horizontal header bands every six courses. This horizontal emphasis is further enhanced by the use of Bluestone caps at walls and parapets.

The use of a flat roof further emphasizes the horizontal aspect of the structure. Parapets and roof edges are finished with a Bluestone cap.

An interior “street” design is used to organize the office/classroom wing.

Expansive vaulted lobbies with glass end walls open to significant plaza spaces. This not only maintains a connection between the building and the site, but it allows the building occupant to remain oriented to the multiple levels and exits.

A grand stair with monitor skylights at terminus.
CCM Village

Railing system

Inside the building, horizontal aluminum railing is used with glass panels to create guardrails. This open treatment of balconies and walkways contributes to the airy feeling of the lobbies.

Conditions

<table>
<thead>
<tr>
<th>Biological growth</th>
<th>Efflorescence at pavers</th>
<th>Efflorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant biological staining</td>
<td>Large areas of efflorescence at the entry to the building are evidence of the use of salts in winter.</td>
<td>At various locations around the building, significant efflorescence can be found on masonry walls. The high concentration of salts is an indicator that a large amount of moisture is traveling through the wall.</td>
</tr>
<tr>
<td>can be seen below caps on parapets and walls. The staining is aligned with joints in the Bluestone cap.</td>
<td>The large areas of efflorescence at the entry to the building are evidence of the use of salts in winter.</td>
<td>At various locations around the building, significant efflorescence can be found on masonry walls. The high concentration of salts is an indicator that a large amount of moisture is traveling through the wall.</td>
</tr>
</tbody>
</table>

Sealant failure

At horizontal joints in the Bluestone caps, sealant has failed, allowing water to penetrate into the masonry below. The large areas of biological staining are evidence that these areas remain wet.

In locations of open joints in the masonry, sealant has been replaced. The color of sealant should be matched to the original color of mortar.
Appendix B

Clifton Court Garage

Cast Concrete

Wall treatment and entrance block share detailing similarity with Rieveschl Hall and Crosley Tower.

A mushroom-topped staircase connects Crosley Tower to the Clifton Court and garage. The brutalist detailing of the walls and roof creates an impression of solidity and permanence.

The edges of the court and the entrance to Rieveschl are closed in using a cast-in-place guardrail similar to those used around Crosley Tower.
Steel reinforcing was placed too close to the surface of the concrete. Water has run through an open joint and caused the steel to rust. This oxide jacking has spalled concrete and exposed the steel to the elements. This exposed steel reinforcing is rusting.
The building is sunken into a large berm along Clifton Avenue. The naturalistic landscape provides a contrast to the strong rectilinear forms of the building.

The building exterior is composed of large, rectangular boxes. Windows, recesses, and cantilevered concrete planes break the large mass.

Large brick volumes are cantilevered from the face to the building. Windows run the length of the cantilever and strengthen the visual impact.

The 1965 addition to the College of Law completely surrounded the original 1925 Georgian Revival Taft Hall. The façade, including massive columns, was removed.
Building entrance

The main entrance to this building faces Clifton Avenue, not the campus. The former Taft Hall by Harry Hake was oriented toward the street and was the terminus of the street-facing row of buildings of the early campus.

Exposed ceiling/floor structure

Beneath the cantilevered boxes and at the top of recesses, the cast-in-place coffers of the exposed floor/ceiling system are clearly visible. The clear expression of the structural system becomes a regular pattern, providing a contrast to the large planes of brick.

Dark windows

Dark glazing in dark frames is used to accentuate the shadows of large overhangs and cantilevers. These dark voids help break up the apparent mass of the large rectangular volumes.

Granite steps

A monumental run of granite steps connects the building to the public sidewalk on Clifton Avenue. Its simple, heavy form complements the rectangular forms of the building.

Interior atrium

The structure showcases a double-height atrium space with skylight.

Conditions

Sealant color

Vertical masonry expansion joints have been sealed with a light-colored sealant, drawing unnecessary attention.
The large planes of the residence hall form a visual edge to the Sigma Sigma Commons. The slick white finish and streamlined horizontal lines are a contrasting backdrop to the planes of grass and tree groves of the commons area.

The form of the building is an unequal chevron open to the Campus Green. The receding vee of the building gracefully terminates the view up the major campus green space.

A loggia formed by columns with concrete cladding creates a walk of deep shade behind the berm that terminates Sigma Sigma Commons. Students walk through this shaded area to access the CRC and Main Street beyond. This walk complements the areas of dark shade within the CRC and on the MainStreet elevation.
CRC Student Residence Hall

Opening in west end
At the west of the building, adjacent to MainStreet, there is a large rectangular opening through the dormitory. Half of the opening is glazed, the other is open air. The steel structure of the building is exposed and celebrated.

Prow at MainStreet
In a dynamic gesture, the structure looms over MainStreet. Visually supported by a large pylon, the large boxy end of the dormitory appears to float above the pedestrian way below. Across MainStreet, a similar prow can be seen on the Steger Student Life Center.

Horizontal aluminum siding
Aluminum siding with a white painted finish was selected for the building cladding. The horizontal joints create a shadow pattern that emphasizes the low, horizontal form of the building.

Horizontal slit windows
Narrow bands of horizontal windows are randomly stretched across the face of the building. Again, the selection of this form emphasizes the horizontality of the structure.

Shade devices
With no overhang, windows are completely exposed to the sun. To reduce the amount of solar gain, the windows on the south elevation are protected with a projecting louver. This louver provides relief to the large flat plane of the building wall.

Precast concrete
The precast-concrete base of the dormitory is exposed facing the service court on the south. Horizontal grooves are cast into the concrete to extend the pattern of the aluminum siding into the court and to the ground plane below.

Conditions

- **Expansion joint**
The building expansion joint at the Armory is flapping when the wind blows.

- **Sealant**
The building materials rely on sealant in a variety of important locations. It will be necessary for the maintenance department to monitor the sealant condition and replace joints when appropriate.
Visibility

This building can be seen from almost all locations on campus. The profile of the tower was used in past marketing brochures. The image of the tower was closely identified with the university.

Plaza

A concrete plaza surrounds the tower on all sides. A cast-in-place concrete wall surrounds the plaza and connects to the adjacent Clifton Court Parking Garage. Cast-concrete planters are located at the four corners of the plaza.

Simple cantilevered seating is cast into the walls that surround the plaza.
Conditions

<table>
<thead>
<tr>
<th>Site wall modified</th>
<th>Terra cotta planters</th>
<th>Replacement lighting</th>
<th>Exposed rebar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections of the cast-in-place site walls have been cut out, presumably to provide emergency, pedestrian, and vehicular access to the plaza.</td>
<td>In an attempt to humanize the stark plaza around the structure, large terra-cotta planters with trees have been installed. The form and color are visually jarring in this concrete landscape. More suitable planters are available.</td>
<td>Decorative light poles located in the formal concrete planters have been modified by the exchange of the light fixture. More suitable fixtures should be selected.</td>
<td>At various locations on all sides and many heights, rebar used in the construction of the cast-concrete walls is exposed. The rebar appears to have been placed too near the surface of the concrete. Water has caused the rebar to corrode and spall the concrete. This exposure, corrosion, and spalling will accelerate.</td>
</tr>
</tbody>
</table>

Cast-in-place concrete

This multi-story cast-in-place-concrete structure is unique on campus. It is an example of a continuous concrete pour often used for Brutalist buildings.

Lobby

The spare lobby is composed of hard-surfaced materials. A central kiva including built-in seating and a low table is centered in the open space.

Round holes at soffit

Where the roof flares out at the top of the building, round holes are placed in what can be described as a soffit.
Entrance bridge

In response to this site, formerly a part of Burnet Woods, a concrete bridge connects the sidewalk and the entry plaza. Constructed of cast concrete supported by two pylons, the bridge is made more delicate by the use of pipe railings.

Transparency

The use of open pipe rails is characteristic of the modernist era. Delicate and horizontal, the railings are cast into the structure.

At the connector between DAAP and Alms, the concrete structure of the building is visible behind the glass wall. Round columns and the concrete floor sit just inside the glazing.
Transparency (cont.)

At the right side of the main façade, the interior stair is made fully visible behind a wall of glass. The large void created by the glass wall contributes to the composition of the façade. The angled stair enlivens the rectilinear modernist components of the building.

Aronoff Center

Between DAAP and the existing Alms Building, a glazed connector was used. This transparent walkway separates the two structures visually and contributes to the designed massing that is so important to both structures. Seeing students moving across the connector adds visual interest.

Conditions

- **Aronoff Center Transparency (cont.)**
 - Spalling

A rectangular volume finished in synthetic stucco has been constructed in the plaza in front of the DAAP building. This entrance block is associated with the Aronoff Center constructed at the rear and appears to pierce the original addition.

Where the concrete floor structure extends through the face of the building to create a canopy at the first floor, concrete is spalling and reinforcing bars are exposed and rusting.
Horizontal mid-rise

The low, horizontal emphasis of the building and mid-rise construction work well with the site—neither overwhelming nor inconsequential.

Massing

The building is composed of large masonry blocks that appear to slide past each other. The box form is accentuated by the open loggia at the north leg of the “Z” where pedestrians can walk under the block.

The plan takes the form of an elongated “Z.” The elbows of the shape create protected plazas tucked off the main campus circulation paths.

Windows punched in flat facade

The large planes of uniform red brick are broken only by paired windows stacked in vertical alignment. The pattern created by the windows is simple and bold and in keeping with the form of the building.
The north leg of the “Z” is open on the first floor to create a loggia. The loggia connects to the adjacent, later, French Hall. Passing through the loggia, pedestrians enter a courtyard plaza formed by the zigzagging plan of the two buildings.

Round columns in the open loggia beneath the building are clad in blue mosaic tile. The intricate pattern provides human scale and interest in this pedestrian area.

In a gesture similar to the loggia at the north, the first floor of the central block is fully glazed to create the impression of a void beneath the large masonry block above. A decorative mullion pattern creates an up-and-down rhythm.

Thin pieces of limestone laid in a horizontal pattern are used at the building entry to clad a one-story box form that appears to slide under the large masonry box above. The texture and color of the stone are typical of the era.

The ceramic tile at the base of the round columns is damaged, perhaps due to maintenance procedures.

The paired windows appear to have been replaced. The dimensions of the sashes and frames appear heavy for the architectural style. The dark-colored frames are not appropriate to the period.

A brick has spalled above one window. It is unclear whether the spalling is a result of movement or moisture.

Window air-conditioning units have been installed at almost all windows along one wall. The paired units create a decorative pattern on the wall. Moisture from the units is dripping on the masonry.
Daniels Hall

Brick residence tower

This high-rise residential tower is constructed of uniform red brick. Vertical emphasis is provided by dark windows aligned vertically. At the top of the building, a fully glazed band of windows caps off the central bay.

A retaining wall carves out a space facing Jefferson Avenue that is used for loading and trash collection.
Metal flashing creates a thin cap above the band of windows in the central bay. This slick horizontal stripe serves as a visual cornice.

Metal cap

The dark windows and vents in the building are not set off by any trim and appear as punched openings in the monolithic tower.

Punched Openings

Entry canopy

A thin metal-clad canopy is cantilevered above the building entry. The thin, horizontal plane contrasts with the vertical emphasis of the other building elements.

Conditions

Sealant color

A light-colored sealant has been used to make repairs on the face of the building. A sealant color that matches the mortar color would be more appropriate.
Axial alignment and symmetry

The symmetrical arrangement of seven round-arched windows is placed on axis with Nippert Stadium, terminating the end zone view.

Symmetry

The building also completes a “quad” with CCM and Memorial Hall.

The front façade is composed of a central pedimented bay with flanking one-story wings. The strict symmetry is typical of this classical revival style.
Brick detailing

This building owes much of its presence to the solidity and mass created by the attention of masonry detailing. Constructed of Flemish bond, decorative sawtooth brick bands are used to create a heavily rusticated base. This sawtooth detailing has been repeated on later buildings such as the entry to Nippert Stadium.

Belt coursing

Strong, off-white terra-cotta belt coursing wraps around the building.

Arch detailing

Terra-cotta voussoirs are placed at regular intervals along each window arch. On an inner brick band, smaller terra-cotta blocks are spaced equally between the keystones, creating a decorative pattern.

Green tile roof

Unique on campus, this green glazed-tile roof appears to be in good condition.

Ornamental copper collection boxes

Ornate copper collection boxes feature geometric patterns and decorative scrolls. Matching decorative straps fix the gutters to the wall.
Dieterle Vocal Arts Center

Rehearsal hall

The open volume of the former gymnasium has been retained as a rehearsal hall, equal in size to the Corbett Auditorium stage.

Security lighting

Security lighting or a camera has been installed utilizing surface-mounted conduit.

Modification

The interior has been completely rehabbed. The entry foyer was constructed within projecting temple front.

Conditions

Modification

Sealant color is poorly matched.

Conditions (cont.)

Terra cotta

Wood frames require repair and paint.

Entry doors

The original entry has been modified by the use of aluminum entry doors in original wood frames.

Windows

Double-hung, four-over-four window sashes have been replaced with aluminum. Original wood frames remain.
Terra cotta

Throughout the exterior, the terra cotta has been painted. Paint is peeling.

Cornice

Missing rosettes in soffit at cornice.

Wildlife

Squirrels have made a nest inside one of the decorative iron vents.

Flagpoles

The decorative flagpoles located at each corner of the building facing the stadium need repainting.

Biological growth

Biological growth is visible below the water table on the stadium side.
Exposed Equipment

At the south corner of the Hannaford structure, a concrete tower is painted orange and capped with a post-modern steel capital.

Coal delivery performance

Above the building, a large stack and coal-loading equipment are clearly visible from the street.

The delivery of coal to the plant and its unloading are celebrated at the south end of the building, where the process is visible to the passerby.
Masonry Detailing

The original structure by Hannaford is built of a dark iron spot brick with minimal stone detailing. The brick is detailed to create a corbelled cornice and thin bands, highlighting window heads.

Windows

A thin belt of stone tops the corbelled cornice. Pilasters terminate in a stone cap with stone lozenges above. Stone punctuates the ends and center of decorative bands above the large windows.

Stone Condition

The original windows have been replaced with large, unbroken panes of glass in dark frames.

Stucco Condition

At the base, stucco is cracking.

Bridge

A covered open-air bridge connects to the Eden Avenue Garage from an upper-floor window.

The stone band that caps the stucco base is chipped.
Appendix B

Eden Avenue Garage

This parking garage was constructed in at least two phases. The structure to the south appears newer than that on the north. The north garage is built of tan brick with black window frames and dark glass. The south garage is constructed of cast-in-place concrete and galvanized steel. Along Eden Avenue, brick clad fins extend above the roof line and change material to concrete.

Pedestrian bridges

A glass-and-steel bridge extends across Eden Avenue to the face of the East Campus Power Plant.

At the west side/rear of the garage, another pedestrian bridge connects to a remote stair tower, collecting pedestrians from adjacent surface parking lots.

Steel panels and grid

Along the south side of the south garage, steel panels and grids are attached to the parking deck.
Exit stair towers

At the southeast corner, a glazed cylinder is contained within the concrete structure by the steel grid. The exit stair winds up through the cylinder.

Material continuity

The exit stairs at the north garage are set just inside the main façade and are day lit with a full-height curtain wall. The stairs are topped with curved roofs.

Brick material choice relates the garage to other campus buildings.

Canopies

At the street level of the south garage, open steel canopies project from the face of the concrete.

Conditions

Rust

Exposed steel is rusting.

Moisture

Water is running under the wall at the face of the north structure and staining the face of the exposed concrete parking deck.

Efflorescence

At the south garage, moisture has caused efflorescence at the red brick.
Skewed cube form

The building, above the podium, is skewed at a slight angle. We assume this to be the angle of the “force field.”

Building entrance

There are a number of building entrances facing Corry Boulevard. Each is recessed behind a colonnade with few external cues for the pedestrian.

Lighting

Decorative metal light fixtures are designed to be embedded in the column corners.

Precast concrete

Solid form provides an edge to the campus; however, the building is not located directly at the corner. There is a large empty lot adjacent to the site. A long, low-rise building including offices and a parking garage are clad in brick and precast concrete. This structure acts as a podium for the office building. Office space faces Corry Boulevard and conceals the parking decks on the north elevation.
The building, podium, and parking garage are all clad in a buff-colored precast concrete. A banding pattern is cast into the panels.

The precast panels, especially at window sills, are soiled by runoff.
The main bay of the ERC terminates the axis of W. University Ave. The entry plaza forms the lower end of the campus MainStreet.

To crown the entry bay of the building, the architect has used a two-story peripteral temple form. The upper level is open on all sides while the space between the columns is filled with glazing on the lower level.

The entry plaza is differentiated from the paving of MainStreet by the use of concrete paving with a skewed grid pattern that continues the treatment of the interior floors. Flanking the entrance bay on each side are three formal, semicircular seating areas that form a retaining wall for landscaping. A tree is centered in each seating area.
Clad in copper, the half-barrel roof form is distinctive on a campus where the majority of roofs are either flat or hidden from view. The end view, most visible when walking down MainStreet, is bold and geometric.

The distinctive truncated cone roof monitors set on copper clad boxes create a unique roof profile. Pedestrians can see these monitors from many locations on campus.

Arranged symmetrically, just behind the brick piers that form the base of the entry bay, large flights of stairs extend to the main lobby on the piano nobile.

A copper-clad bridge extends from the west side of the structure and terminates at a tower in front of Rhodes Hall. The tower and bridge are strong visual components of the Library Square.

The first-floor windows are half-round Romanesque forms set in sandstone base. Above, square, four-light windows are aligned rectilinearly. At the recessed connectors and on the ends, oculus windows are punched in the brick walls. Frames are heavy, dark anodized aluminum.

The north and south facades feature a large brick wall with oculus windows punched in rows. These windows serve to light internal circulation hallways. The windows form a distinctive, strong pattern.

Using Ohio sandstone to clad the building base ties the building to other components of the built environment created since the 1990s. The salmon-colored brick contrasts with the predominate red brick of the campus, but provides a sense of permanence and solidity not found in other structures of the recent building period.

A slight variation in color differentiates between the building bays and recessed connectors to accentuate massing.
Open joints

At the peripteral temple form at the top of the entry bay, joints are open, allowing water to run through. Water is directed down the face of the round ribbed columns below and removing the integral color. Other atmospheric staining is accentuated by the washing action of the water.
Setting

The south wall of the arena forms the edge of a baseball diamond and a practice field immediately adjacent.

Connection

A long, narrow walkway runs along the south side of the building between the arena and the baseball diamond.

A monumental set of stairs makes the transition from the east entry plaza down toward Dabney Hall.
Purely functional in form and appearance, the arena building presents a large blank wall to the south. The focus of the building is on the inside, not the outside. The location of the Lindner Center conceals the west wall.

The building entrances are part of a large, dark glass wall recessed behind the freestanding columns and beams at the plane of the main façade.

The entrance doors are bright red. A matching bright-red stripe runs the length of the storefront glazing to unify the façade treatment. The red and black colors of the university become decorative building elements.

Precast-concrete detailing steps back at the corner to allow access to the entry colonnade and to bring light into the interior lobby.

Some areas of rust are visible on the precast concrete.

Condition
Precast condition
The flat roof defines the rectilinear form of the building, clad in tan brick and capped by a concrete cornice.

The walls extend unbroken from the ground level to the top floor where a row of windows surrounds the structure.

A cornice composed of a parapet and a window frieze is unified by concrete trim that extends beyond the windows from the cap and onto the wall below.
Entry

A wall setback designates the main entry. Above the entry, the recess is covered with squares of book-matched limestone.

Verde Marble

An entrance canopy is supported by two concrete piers located along the center-line of the canopy. The canopy is positioned asymmetrically within the recessed entry.

To the right of the entrance door, verde marble panels cover the ground floor of the entry recess.

Conditions

Cornice staining

Biological growth is creeping up the wall above the window frieze.

Efflorescence

The pavers at the entrance show significant efflorescence.

Water Damage

Water damage is visible through the glass at the entry storefront system.

Stucco condition

Stucco applied over brick at the base is cracking from moisture. The grade has been lowered, exposing brick below the stucco.

Canopy spalling

Stone is spalling beneath the flashing at the entrance canopy. There appear to be two layers of flashing here.
Appendix B

French Hall
Potter Tyler & Martin, James E. Allen, 1953

Modernist
Wilson & Associates in association with NBBJ, addition 1996

Originally designed in a zigzagging shape, the building formed a large courtyard in the “C”. The courtyard has been filled in with a large addition. The building connects to the adjacent Dabney Hall to form a courtyard on the east side. A large addition fills the former courtyard. Constructed of white precast concrete, the first floor was finished in brick to tie in with the original structure.

Scale

This mid-rise, horizontal structure uses much of the same language as the adjacent Dabney Hall. The material and scale are appropriate to the siting and form of the structure.

Relationship to grade

Like many structures on campus, the first floor on one side is the second floor on the other. Here, a raised entry plaza, ramp, and concrete retaining walls create a base for the building on the west side.

Adjacency

The new building entrance is up a large flight of stairs into an atrium lobby. The stairs and lobby face the delivery dock for the newly constructed Campus Recreation Center.

Barrel form

A large barrel form is the massing focus of the new addition. The face of the barrel is broken up with a grid joint pattern and a single band of windows. Extending up behind the barrel is a complementary concave curved wall. Unlike the original building which features a pattern of rectangular windows regularly spaced across the façade, the addition is almost completely devoid of fenestration.
French Hall

Roof Deck

The roof of the barrel is finished as a roof deck and edged with a galvanized railing system.

Vent Stacks

Large stainless-steel stacks protrude prominently from the roof and enliven the roof line. The slick metal contrasts with the brick and texture of the precast.

Window pattern

Large fixed plate-glass windows are paired with smaller operable windows to create an asymmetrical muntin arrangement. Small vents below each window create a separate pattern on the wall.

Interior features—Design

A large atrium was created between the new structure and the original brick building. The brick remains exposed in the atrium.

Conditions

Open Joints

At the connection between French Hall and Dabney, the joint is open. White sealant has been used to fill the joint, but a portion of the sealant is missing.

Structural movement

Displacement of the brick wall at the parapet or cornice can be detected. Long planes of masonry with no relief or expansion joints can lead to such displacement. Horizontal cracking has resulted.

Sealant failure

Water damage is visible through the glass at the entry storefront system.

Loading Dock

A new loading dock beneath an aluminum-clad canopy faces the newly constructed Schneider Hall.

The metal cladding at the loading-dock canopy has been damaged by trucks.

Rusting

The attachment of the lights at the precast panels is rusting.

Atrium glass

The glass at the atrium system is extremely dirty. This buildup of soil can lead to etching and permanent discoloration of the glass.
The building is almost completely surrounded by driveways.

Using the concrete structural system, large blocks cantilever from the face of the building. These create dark shady areas below.

On the west side of the structure, beneath a large overhanging cantilever, a small box enclosed with glass extends by means of a smaller cantilever.

The first floor is clad in horizontal blocks of gray granite. The rough face is exposed and provides a contrasting texture to the large planes of brick above.
<table>
<thead>
<tr>
<th>Exterior stair</th>
<th>Seating area</th>
<th>Building entry</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>A long, undulating stair runs alongside the granite-clad foundation to connect the Clifton Court Driveway to Braunstein Hall.</td>
<td>A small, round, brick-paved sitting area is located on the west side of the building. The curved retaining wall acts as the seating.</td>
<td>A dark tunnel with the appearance of a service access road runs beneath the building, open on the east and west. The entrance to the building is located on one side of the tunnel.</td>
<td>Windows are mostly horizontal and are composed of a storefront system with dark mullions and large planes of glass. At cantilevers, vertical windows are arranged side-by-side across the face of the form. A recess with vertical glazing accentuates the connection of large box forms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slate roof</th>
<th>Coffered concrete</th>
<th>Loading dock</th>
<th>Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sloped slate-covered roof tops the cantilevered boxes extending from the side of the structure.</td>
<td>The floor/ceiling system is coffered concrete. At cantilevers, the system remains exposed.</td>
<td>On the north side of the building, a loading dock faces the driveway to the Clifton Court garage. This loading dock is more easily identified and more prominent than the entry.</td>
<td>An internal atrium looks up through floors.</td>
</tr>
</tbody>
</table>
At the vertical recess connecting the large forms of the structure, aluminum foil has been applied to the inside face of a window.

Soiled stone

The irregular face of the granite blocks used to clad the base has collected a large quantity of dust. The buildup is of sufficient quantity to change the apparent color of the blocks.
The building is composed as a central hall with recessed connectors on each side. At the ends, pavilions project forward.

Symmetrical five-part façade

Exit stairs are located at the recesses between pavilions. Three-story-high glazing daylights the stair halls. Decorative spandrels separate the windows.

Recessed connectors

At the west side, a separate volume, one story above a raised basement, is connected with a short hyphen. The low-sloped gable roof and pilasters give the impression that large trusses were used to create a large open space.

Rear volume

The building is constructed of a dark glazed brick, highlighted by stone trim. The rear of the building is completely surrounded by parking.

Health Professions Building

Beaux Arts

Samuel Hannaford & Sons, 1916
In contrast to the concealed roof of the main structure, the rear volume is topped with a gable roof that terminates in projecting parapet walls.

The monumental entry to the main floor is composed of a grand set of stairs with flanking walls. Atop the walls, cast iron light pylons with multiple globes draw attention to the entrance.

Cut stone surrounds the front door. The frame is decorated with a cartouche and university seal.

The ground level foundation is constructed of cast-in-place concrete. At the window edges, the concrete is rubbed to add detail to the simple wall plane.

At the east side, areaways extend below grade and are protected with heavy iron railings.

The majority of windows are paired sets of double-hung two-over-two windows with transoms above.

Carved stone cartouches are centered above the door and above the center windows located at the end bays.

Just inside the front door is a small entrance vestibule clad in grey-veined white marble.
<table>
<thead>
<tr>
<th>Exit stairs</th>
<th>Art glass at auditorium</th>
<th>Plaster detailing</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The exit stairs, with cast-iron and wood railings remain in their original locations.</td>
<td>In the south-wing’s upper floor auditorium, leaded glass casement windows with brass hardware fill the openings facing east. The names and date of construction are found in one pane.</td>
<td>At the entry lobby at the rear building walls are decorated with plaster festoons and a wall clock.</td>
<td>At the rear volume, double-hung two-over-two windows stand beside fixed replacement windows.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balconies removed</td>
<td>Window deterioration</td>
<td>Rust</td>
<td></td>
</tr>
<tr>
<td>What appear to have been wrought iron balconies have been removed below the center windows in the end bays.</td>
<td>Deferred maintenance at wood windows has resulted in paint failure and exposure of wood to the elements. Wood frames and sashes are deteriorating.</td>
<td>At the rear of the building, facing the parking lot, large louvered vents are unpainted and rusting. Rust is staining the building face.</td>
<td>Metal mullions and spandrels at the stair hall windows are rusting.</td>
</tr>
</tbody>
</table>
Cornice flashing is rusting and staining the stone below. Note that the brick and stone detailing here match that found at Hannaford’s East Campus Power Plant.

The main entrance stair and ramp appear to be replacements.

The windows at the northern pavilion have been replaced with fixed panels. Mullion configuration does not relate to original window design.

At the rear volume, substantial cracking is visible in the concrete foundation. The cracks are predominantly associated with window heads.
Kettering Lab Complex

The Kettering Lab Complex is composed of four structures.

We have assumed that the building on the northeast is the oldest of the four structures. We assume the first addition to be the central block located to the south of the first structure. Modern interpretation. The third structure was built on the south side of the earlier buildings. On the west side, the largest of the four buildings, and most recent, has been constructed and joins all buildings together.
The second addition has been constructed using a palette of materials similar to those of the earlier buildings.

At the third addition, brick and stone are interpreted differently. While windows are linked by a stone band similar to those used at the third addition, here the stone is flush with the brick. Vertical bands of stone are aligned with one side of the windows to create an asymmetrical composition.

Wood windows on the first addition match those of the original building.

Wood windows at the original building and first addition are similar to those seen at the Health Professions Building and are composed of pairs of double-hung, two-over-two units with transoms.

Stone trim joins almost square windows into horizontal bands at the second addition.

At the third addition, single, fixed windows are constructed of dark frames and glass.

A cantilevered flat concrete roof protects the front doors.
Conditions
Exposed rebar

At the concrete base of the original structure, rebar is exposed where concrete has spalled.

At the second addition on the south side, the concrete canopy is showing signs of deterioration from water.

Edges are covered in efflorescence and concrete is spalling on the underside.

Windows

Windows need paint and are deteriorating.

Stone spalling at entry

Above the entry door at the original structure, the stone base sitting on the concrete foundation wall is broken.

Stucco

At the first addition, stucco is delaminating from the face of the concrete foundation.

Stone-base damage

At the third addition, a large piece of stone has spalled away from the top of the stone base.
Massing contrast

The main floor of the hotel bows out on the north and south to house meeting rooms and restaurant space. The subtle curve contrasts with the rectilinear hotel block above.

The elevator lobby tower is identified by a rounded brick volume.

On the face of the curved, one-story portion of the hotel, large buttresses with battered sides visually support the cornice.

The base of the structure is veneered in Briar Hill sandstone. In shades of brown, tan and orange, this stone is the same as used by Hargreaves at the entrance pylons.

The six floors above the sandstone base are veneered in red brick.
Kingsgate Conference Center

Dining plaza

Awnings can be rolled out and doors opened to allow the large plaza on the south side of the building to be used for outdoor dining.

UC symbol

At the south side of the building, a porte cochere with large pyramidal skylight serves as an unloading space. The space terminates the long, low, one-story projection.

Lighting

The structure is lit with white sconces and pylons designed in a streamlined look similar to that sold by Poulson Lighting.

Conditions

Biological growth at stone sills and belt course

The porous stone appears to be holding moisture. Biological growth, significant for the age of the building, is found on all sides of the building.

Oxide halos

Wherever metal is attached to sandstone, a halo of oxide has formed. Note this particularly at lighting and reverse channel, pin-attached letters.

At the face of the planter over the garage entry, moisture has discolored the stone.

Appendix B 82
The edge of the planters has been scarred by skateboarders. Sealant has pulled loose.

An emergency egress walkway runs behind the raised planter over the garage entry. Water is trapped here and standing.
Operated by Marriott, the Kingsgate Conference Center hosts University of Cincinnati events. Vontz Center is pictured in the background.
As the site steps down to the north, the Woodside Drive parking garage forms the base of the building. Constructed as a whole, the volume of the garage contributes to the scale and mass of the structure.

Library Square

The library forms the north side of Library Square facing Rhodes Hall, Zimmer Auditorium, and the Engineering Research Center. Paving patterns and lighted pylons decorate the square.

Horizontal emphasis

The use of flat roofs, long dark horizontal window bands, and the concrete balcony give the building a decidedly horizontal emphasis.

Roof cantilevers

Using the structural system to provide sculptural relief to the large building, the roof cantilevers at windows create another horizontal plane.
Langsam Library

<table>
<thead>
<tr>
<th>Glass corner</th>
<th>Entry</th>
<th>Coffered structure</th>
<th>Concrete bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the corner facing southeast, the corner has been cut back in a zigzag. The faces of the stepped planes are completely glazed.</td>
<td>The building entrance is located in deep shade underneath a stepped recess. A cast concrete balcony runs the length of the entry recess.</td>
<td>Similar to the Geology/Physics building, the coffered concrete floor/ceiling structure is exposed at overhangs. The deep coffers are characteristic of this style.</td>
<td>Connecting the library to the adjacent Rieveschl Hall, the bridge is covered with a half-round Plexiglas cover.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brick</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>In a departure from the red brick so prevalent on campus and also characteristic of the city, this structure is finished in brown brick of a uniform color. In detailing the masonry veneer, the architects used stacked soldier courses to accentuate the cornice and other features of the structure.</td>
<td>Exposed sprinkler piping in the garage is rusting.</td>
</tr>
</tbody>
</table>
A small plaza is located just in front of the library entrance. Cast-concrete seats, in a mushroom shape, are scattered beneath trees.

This structure is a simple box with minimal articulation. The walls are flat planes of monochromatic bricks.

Windows take the form of long, dark, horizontal bands with dark frames. These windows are the only decorative feature on the face of the structure.
Design

Barrel form at entry

Brown brick

Prominently located at the north end of Campus Green, Lindner Hall is constructed of a light-brown, uniformly colored brick veneer. This material is in contrast to the red brick that covers most of the historic campus buildings.

Conditions

Open joints

Sealant has failed at various expansion joints, leaving them open to the elements.

Sealant Failure

The dark sealant used to install windows is chalking and water is washing the dark color down the face of the building.
The building is located in found space in a void between the Nippert Stadium and Fifth Third Arena and serves as a backdrop for to the west side of the bleachers. The close relationship between the grandstand and the white curved building accentuates the architectural diversity.

In contrast to other rectilinear or geometric shapes found in more traditional campus buildings, the Lindner Center takes an organic form, sort of a stylized sock, resulting in curvilinear, undulating walls. This strong geometry is not a response to a desired function but rather a sculptural expression.

The prominent dark triangular windows express the precast structural system. To create the organic form, the architect chose precast concrete. The system makes deep recesses at windows possible and gives a substantial feeling to the otherwise playful structure.

Setting

The building is located in found space in a void between the Nippert Stadium and Fifth Third Arena and serves as a backdrop for to the west side of the bleachers. The close relationship between the grandstand and the white curved building accentuates the architectural diversity.

Organic massing

In contrast to other rectilinear or geometric shapes found in more traditional campus buildings, the Lindner Center takes an organic form, sort of a stylized sock, resulting in curvilinear, undulating walls. This strong geometry is not a response to a desired function but rather a sculptural expression.

Structural system

The prominent dark triangular windows express the precast structural system. To create the organic form, the architect chose precast concrete. The system makes deep recesses at windows possible and gives a substantial feeling to the otherwise playful structure.
Full-height atrium

The interior features a full-height atrium with a continuous surrounding balcony. Balcony guardrails are clear glass with a single rail on top, further emphasizing the sinuous horizontal lines. The soaring vertical space draws the occupant’s eye upward.

Occupied spaces are located around the perimeter of the building and are connected by the linear balcony walkways. The single-loaded “corridor” is an organizing feature.

A continuous stair with landings at each floor begins at one end of the atrium and continues in a straight line to the top floor. This bright-red stair with glass guards becomes a sculpture within a sculpture and dominates the atrium.

Red and Black color scheme

The walls of the first-floor lobby are covered in displays that chronicle the history of athletics at the university as well as the performances of various sports. A strong red-and-black color scheme reflecting the school colors make a strong statement in the otherwise neutral space.
The former General Hospital Nurses' Home was added to the National Register for its association with the history of medicine in Cincinnati and as an example of the work of Cincinnati architects Samuel Hannaford and Sons. During the first decades of the twentieth century, the firm was responsible for the design of many area public and institutional buildings, with a specialization in hospitals. The Cincinnati General Hospital complex was completed in 1915; the 1914 Nurses' Residence is the best-preserved of the original eighteen buildings. Renamed Logan Hall in 1954, it occupies an important role in Cincinnati's medical history as the physical embodiment of an unbroken line of progressive nurses' training programs that date from the founding of a training school in 1889 through several successor organizations to creation of an autonomous College of Nursing and Health at the University of Cincinnati in 1938. Logan Hall is associated with three progressive movements: hospital care, public health, and women's history. When Cincinnati General Hospital moved from downtown to its new campus in the university area in 1914, the Nurses' Home became a haven as well as a training ground for aspiring nurses. During the limited hours when the women were not in class or working at the hospital, the dormitory served as their primary outlet for dining, social, and recreational needs. Miss Laura Logan, a pioneer in curriculum reform, instituted courses and fieldwork in public health during her administration as director of the School of Nursing and Health from 1914 through 1925, leading to a stronger social presence of nurses in the community, and setting the tone for medical achievement among women. The National Register nomination was prepared by Bruce E. Goetzman, AIA. The property is owned by the City of Cincinnati. From Ohio Historic Preservation Office website.

The U-shaped building is mainly constructed of a dark-red brick. Stone banding and other details contrast with the dark-red walls. The interior has been renovated, but many of the original details remain.
Three-part structure and facade

The building massing on the east side is symmetrical with a central main block rising one story above the two flanking wings. The wings project slightly in from the main block.

At the first floor, heavy stone bands wrap around the building to create a rusticated base. At the top band, above the windows, a keystone is centered at each opening.

Front and rear loggias

The front loggia provides a deep shady space on the east façade. Here, the piers are constructed of brick with the rusticated stone banding pattern.

Similar in form to the entrance loggia on east façade, an open terrace at the west façade on the main floor is supported by a loggia on the ground floor. The loggia is finished in stucco.

3/1 windows

Windows are paired sets of three-over-one, double-hung, and are separated by a wide wood mullion. The openings are constructed with a brick jack arch and stone keystone at the head.

At the top floor, a rectangular band of raised brick forms a panel between each window. At the corners of each rectangle, a square piece of stone is set. These stone accents create a lively pattern at the upper floor.

Stone detailing

Stone spandrel panels decorated with bas-relief garlands are set below some windows.
The building takes advantage of the natural grade. On the east, the entrance is on the main floor which is set just a few steps above grade. On the west, the ground floor is completely above grade.

The ground floor appears to be constructed of concrete with a stucco coating.

Decorative wrought iron is found at balconies on the east façade and along the terrace on the west.

Heavy light fixtures at the front door are in the Arts and Crafts style. Gridded lantern baskets hang from wrought iron brackets.

Original paired wood entrance doors with single lights remain as well as a second pair at the inside vestibule wall. Each frame includes a multi-light transom above.

On the interior, a large lobby space features a coffered ceiling supported by heavy piers. Classical plaster moldings are found within coffers and at the top of columns. The west half of the lobby has been separated by a wall to form office space. The wall does not run to the ceiling, allowing the coffers to be visible.

At the hallways running north and south from the central lobby, simple oak frames with operable transoms remain. In some locations, original doors with lights and panels are in place, while at other locations, the doors have been removed.
The stucco covering the ground floor is cracking and detaching from the concrete substrate.

A vertical crack in the stucco runs up the ground-floor base. This crack should be investigated.

White sealant has been used to repair joints in the brick as well as the stucco. The light color of the stucco draws attention to the repairs.

Mortar loss has resulted in open joints in the brick and at the stairs.

Stone is stained by both atmospheric soil and gypsum crust. Shown at right is an example from the entry pediment.

Cracks can be seen in stone in various locations. As in the example photograph, many areas have been repaired. Some have cracked again and should be examined for structural movement.

At the cornice on the east side, water is washing through and causing mortar loss. Efflorescence is visible around the area indicating that brick is being saturated by water.

At the front loggia, ceiling fixtures have been replaced using pendants with large semicircular bowls. These new fixtures are a sharp contrast to the original sconces. More appropriate fixtures could be found.
MainStreet Lecture Rooms

Adjacencies

The curved form and metal screen form one sculptural wall of MainStreet.

Large Arc

The south end of the structure extends over the stadium and presents a flat, solid face.

The building arcs around the side of the Campus Recreation Center. The second story is suspended over MainStreet and creates dark shade beneath.
Sculptural stair
A freestanding stair is located away from the face of the structure and sits to the side of MainStreet. The angular, rectilinear form contrasts with the gentle curve and cant of the wall beyond, contributing to the impression that the volume is suspended.

Metal screen
A corrugated, perforated metal shading screen provides a semi-transparent face to the building.

Curtain wall
The exterior wall of the lecture rooms behind the screen is formed by a curtain wall with dark glass and dark mullions. The wall is tilted out slightly.

Lighting pipe
A stainless-steel pipe arcs around the curve, providing another dynamic element to the sculpture. The pipe holds lighting that illuminates the screen at night.

Workmanship
Attachment details are celebrated.

Conditions
Birds

Birds are roosting in the structure that supports the perforated metal screen.
A terrace on one side is contrasted by a gently sloped green lawn on the other. The glass pavilion appears to hover above the lawn on a recessed concrete base.

The pavilion is located in a space created at the intersection of Calhoun and Siddall Halls. Low and horizontal, it contrasts the vertical towers that shelter it.
Marketpoint at Siddall Hall

Plaza

An outdoor plaza on the north side of the building is finished in the school colors—black and red. Hard surfaces, dark colors, and lack of vegetation make the plaza less inviting than it could be.

Metal ribs

Between the glass panes, metal ribs extend from the bottom of the glass to a point above the roof plane, creating a modern interpretation of gothic crenellation.

Dark glass

Floor-to-ceiling dark-glass panes surround the west, east, and north facades. The glass reflects the adjacent Memorial Hall.

Conditions

Connector

An enclosure has been constructed between Siddall Hall and the Marketpointe building. This connector and the adjacent retaining wall have created a concealed, inaccessible area to the south that presents safety concerns.

Conditions (cont.)

Rusted railings

Steel-pipe rails are rusting at the handicapped ramp added to the entrance steps.

Modification

A handicapped ramp has been added beside the stairs. While tucked in the corner, it requires two switchbacks.

Diagonal Cracking

At the intersection of brick planes, diagonal cracks have developed. Light-colored sealant has been used to close the crack.
The large structure forms the focal point of two campus open spaces—McMicken Commons on the east and Clifton Arc on the west.

Providing a connection from the public Clifton Arc side to McMicken Commons is a large segmental-arched tunnel. The axial location provides a vista to the formal temple front of Tangeman University Center.

Dominating the campus, the tower at McMicken Hall is a strong Neo-Georgian form. The zinc cladding of the lantern and spire set a precedent for the extensive use of metal finishes found on the newest buildings on campus. The lower step of the tower is surrounded by a Chippendale-style balustrade, and corners of both steps are highlighted by large urns.

The building is organized as a large central hall with pedimented pavilions at each end. The central hall features a pedimented bay in the center.
<table>
<thead>
<tr>
<th>Gable Parapet</th>
<th>Dormers</th>
<th>Broken Apex Pediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the ends of the gable roof, the building wall extends to form a parapet, giving the structure a distinctive roofline.</td>
<td>Small dormers are located along the bottom side of each roof plane above the central hall. Some dormers are fronted by windows, others by vents. The dormers add interest to the large roof planes.</td>
<td>A broken pediment with window settled in, this appears at various locations on campus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedimented Stone Entries</th>
<th>Slate Gable Roof</th>
<th>Mick and Mack</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handsome stone surrounds with broken-bed pediments provide access to the center hall section. Each surround contains a pair of doors with a semicircular transom above. Stone stairs lead to a landing at each door. At the wings, simpler surrounds are used.</td>
<td>A multicolored, slate, gabled roof tops the main hall and wings. The slate appears to be in reasonable condition. The scale of the slates and mottled color provide textural relief to the large roof plane.</td>
<td>A stone lion flanks each side of the arched entryway. Named Mick and Mack, they have become university icons. They are painted, presumably to conceal repairs to damage from vandals.</td>
<td>Atmospheric staining and gypsum crust are evident at all stone trim and detailing.</td>
</tr>
</tbody>
</table>
Paint is peeling on the entrance doors and there is evidence that the doors are deteriorating, including rot and opening of joints in the stiles and rails.

White sealant has been used to replace mortar at various locations in the stone detailing.

On all sides of the structure, the cornice is stained from roof runoff. This could indicate blockage at internal gutters or in the gutter itself.

Decorative iron railings at stairs and landings are rusting and failing. Oxide jacking is displacing the handrail. Post bases are weakened.

Mortar at the joints in the prominent steps located at building entries has been allowed to disintegrate. The use of salts accelerates the destruction of the joints. With the joints open, water can enter the structure, freeze, and cause displacement. Open joints are visible at the sides of the landings and at other stone trim.

Large six-over-six windows have been replaced. The sight lines of the sashes and muntins are appropriate to the Neo-Georgian style.

At a corner, the stone base has cracked, indicating movement. Long masonry walls often exhibit these cracks when expansion joints are not adequate.

The use of salts to melt ice has resulted in deterioration to the bottom of the door surrounds.
Memorial Hall

University Gothic Residence Hall

The style of this building, while unique on the campus, is typical of many university buildings across the nation.

Massing

Using the tower and distinct wings, the main façade is asymmetrically composed. The front door is tucked to the side of the prominent tower, heightening the asymmetry.

Tower

The ell-shaped plan takes advantage of the topography. On the low side, a long, wide run of stairs leads to the entrance plaza, making the building tower above the pedestrians below. On the high side, a green lawn fills the space enclosed by the walls, creating a private park-like area.

Asymmetrically arranged on the front elevation, a large tower including gargoyles, a quatrefoil screen at the parapet and vertical windows dominate the composition. Decorative terra cotta draws attention to the tower.
<table>
<thead>
<tr>
<th>Bays</th>
<th>Tudor Arches</th>
<th>Terra cotta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick and terra cotta bays are located on the front and rear. The front bay includes grotesques at the top of the terra cotta.</td>
<td>The main building entry from each side is through a large Tudor arch.</td>
<td>Highly figured terra cotta accents the tower and main entry of the building. Especially notable is the water table that includes stylized tanks, ships, cannons, planes, and other military symbols.</td>
</tr>
</tbody>
</table>

Terra Cotta (cont.)

<table>
<thead>
<tr>
<th>Slate Roof</th>
<th>Brick Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grotesques are located at the top of the terra cotta at the front bay.</td>
<td>At the top of chimney stacks, terra cotta is been cast to give the impression of highly-decorated, clustered chimney pots.</td>
</tr>
<tr>
<td>The prominent roof and dormer roofs are clad in mottled slate. The texture of this material contributes to the aged look of the structure.</td>
<td>The masons have created a hand-crafted feeling by varying brick bonding patterns. Common bond is used with a Flemish bond course every third course. Such creative bonding patterns are often found in English revival architecture.</td>
</tr>
</tbody>
</table>
Memorial Hall

Conditions
Additions

As part of the construction of the CCM building, an enclosed walkway with a long brick-paved walk on the roof connects to CCM. The bridge terminates at Memorial Hall with little regard for the architectural composition.

There appears to be an addition made to the south end of the structure. A stair has been fitted into a notch created in the masonry. The stair is glazed in a modern storefront system with strong vertical banding.

Dormers have been added at the front and back of the building. Some are small and seem appropriate to the architecture; others are large and detract from the roofline. The larger dormers are mostly located on the rear of the roof.

Terra Cotta

The terra cotta on the building has been painted. The paint is chalking on all sides of the building.

A large crack is visible in the corner of one of the terra cotta door surrounds. Indicating movement and possible damage to a concealed header, the crack can allow water to enter the structure, freeze, and create further damage.

The terra cotta dogs that project from the corners of the tower as well as the birds lower on the window are held together with straps. Many other sculptural terra cotta elements have been repaired in a similar fashion.

A corner of the water table has been broken off.

New windows have been installed in the stone frames.

At the entry tower, vertical windows have been replaced with modern windows that include a glued-on diamond-patterned muntin. The large pattern and thick muntins are not typical of the era.
Memorial Hall

Conditions (cont.)

<table>
<thead>
<tr>
<th>Mortar Joints</th>
<th>Open Joints</th>
<th>Biological Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick mortar joints, can be found on the front of the building. These appear to have been repointed, but they could have been a design decision. Further investigation is required.</td>
<td>Along the connection of the plaza paving to the front face of the brick, the expansion is open allowing water to enter. In one section, an attempt to repair the problem left a large bead of mastic visible.</td>
<td>Behind a downspout tucked into a corner, significant biological growth can be seen. It is possible that the back of the gutter has deteriorated or a seam has opened allowing water to saturate the brick.</td>
</tr>
</tbody>
</table>
The surviving two buildings of the “Three Sisters” outline the edge of the Campus Green.

The building is set above the grade of the Campus Green to create an earthen podium. Large, wide runs of concrete stairs are centered on the building.

Morgens Hall is a duplicate of the adjacent Scioto Hall. A third structure, Sawyer Hall, has been demolished. As a part of a large composition, the two buildings reinforce one another but have been diminished by the loss of the third “Sister.” The high-rise residence buildings enjoy a bird’s-eye view of the Campus Green below.
Morgens Hall

Colonnade

The first floor of the building is inset. At the front, a colonnade is formed. A folded roof canopy joins the building to Scioto Hall next door. This colonnaded walkway is not only a formal connection between the Sisters, but also serves as an activity area for the building tenants. A children's play area is found off of the colonnade between the two structures.

Balconies

Three bands of cantilevered balconies protrude from the face of the building, providing visual relief, shading, and a connection between the indoors and the outdoors.

Penthouse

A thin concrete canopy can be seen at the rooftop. It appears to be a shade structure.

Concrete Frame

The concrete structure of the building is exposed and treated as a decorative feature.

Aluminum Windows

An aluminum curtain wall system, including operable awning windows and colored spandrels, sheaths the building. The rectilinear grid, material, and spandrel color are typical of the architectural style.

Mosaic Columns

On the ground level, the first floor is set back and the mass of the building above is supported by large round columns. The columns are tiled in square mosaic tiles. The tiles have been painted but appear to be cream colored.

Conditions

Exposed Steel

In some areas on the cantilevered balconies, reinforcing steel is exposed and rusting.

Painted Mosaic

The mosaic tiles have been painted and the paint is failing. The tiles below appear to be a similar color. It is unclear why the tiles have been painted.
Morgens Hall

Conditions (cont.)
Damaged Ceiling Tiles

At the underside of the first floor, the ceiling tiles show staining from moisture. The tiles make it difficult to access the space above.

Concrete Damage

The concrete beam running across the bottom of the structure and sitting on top of the round columns is fractured. This crack could be the result of movement at this connection.
Appendix B

Faculty Center at Myers Alumni Center Cellarius & Hilmer 1969

Though constructed in the late 1960s, the structure pays homage to the Prairie-style designs of Frank Lloyd Wright. The use of brick and stucco, the detailing of the windows, and the low, horizontal lines all contribute to the style.

Myers Alumni Center Glaser, Myers & Associates, 1988

Prairie style

Setting

This low-scaled building sits to one side of Campus Green. The building is very pedestrian-scaled and is experienced as a “pavilion in a park.”

The Alumni and Faculty Center buildings have been constructed in a “U” configuration. Inside the “U” is a courtyard protected behind a brick privacy wall.

A low-hipped Bermuda metal roof tops the structure. Large overhangs provide shade to windows that run up to the underside of the wide stucco soffit.

Roof
The transition between the ground plane and the building is softened by the use of low planters with limestone caps.

The main entry to the Faculty Center is through a glazed wall into a two-story-high lobby space. The glazed opening is articulated with substantial wood mullions. The large glazed area reads as a dark void and draws the pedestrian to the front door.

The exterior walls of the building have relatively few windows. Major glazing has been oriented to the courtyard.

Outside the main gathering space in the faculty club, a large terrace overlooks the courtyard space. The terrace is edged with a low, white stucco wall topped by a simple, open pipe rail.

The structure is clad in red brick with random dark headers. The brick is laid in Flemish bond.

The aluminum entry doors and doors to the terrace feature narrow, streamlined panic hardware. The delicate frame and hardware allow a larger area of glazing than products available today.

In contrast to the glazed opening of the adjacent Faculty Center, entrance to the Alumni Center is through an open brick pavilion.

The pavilion entry at the Alumni Center shows efflorescence on all exposed side.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Repointing</th>
<th>Painted Wood</th>
<th>Open Joints</th>
<th>Paint Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A hard pointing mortar has been used to make repairs at the Faculty Center. The new mortar is lighter in color than the original.</td>
<td>The Faculty Center relies on large wood mullions to divide glazed areas. The paint on the wood here and in other exposures requires painting. There is some evidence of wood deterioration where paint has failed.</td>
<td>At various locations around the building, open joints are visible.</td>
<td>The color used to paint the exterior stucco appears too white for the style of architecture.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handicapped Ramp</th>
<th>Salting of Steps</th>
<th>Railing</th>
<th>Underside of Soffit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ramp for wheelchair accessibility has been added to the north side of the structures. The ramp is straight-run and constructed of wood. As a result, the ramp becomes the focal point of the structure as viewed from Campus Green.</td>
<td>At exterior stairs, a large concentration of efflorescence can be seen adjacent to the steps. This is a sign that salts are being used to melt ice. The brick in this area is deteriorating.</td>
<td>The pipe rail at the Faculty Center does not meet current codes.</td>
<td>At the underside of the soffit, screens to protect a vent have been damaged, allowing access to the attic by squirrels and bugs. Light-fixture trims in this area also show evidence of light rust.</td>
</tr>
</tbody>
</table>
The location of the stadium in a depression at the center of campus creates visual connections between MainStreet and distant buildings on campus.

Beyond the grandstands, university buildings help define the stadium space. Dieterle, constructed on axis, formalizes the end of the stadium.

The CRC and Lindner Center close the north end of the space. The CRC presents a boxy, closed roof structure.
<table>
<thead>
<tr>
<th>Press box</th>
<th>Scoreboard</th>
<th>Bas-relief</th>
<th>Red brick wall, 1912</th>
</tr>
</thead>
<tbody>
<tr>
<td>The press box leans out over the grandstands on the east side of the stadium.</td>
<td>At the south side of the field, a recent scoreboard and support structure have been constructed. A pedestrian bridge connects the CRC to the new Lindner Center and Arena.</td>
<td>A bas-relief sculpture in stone at the north end of the stadium commemorates Jimmy Nippert, for whom the stadium is named.</td>
<td>Some remnants of the old wall surrounding the stadium remain.</td>
</tr>
</tbody>
</table>
Curved backside

The side facing away from the stadium is sheathed in a dark red brick with stone banding. Bands of saw-toothed brick provide relief to the upper band. This detailing is reminiscent of brick work at Dieterle. Large limestone panels clad the base of the structure.

Entry

Centered above the central entrance gate is a large round window set in a plane of stone.

The entry stair has been modified to create a landing and to provide for a handicapped ramp. At the front face of the flanking walls, the stone cap has been inscribed with the words “Theory” and “Practice.”
Field side

The side of the press box facing the field is constructed in a completely different language. This modernist front is executed in aluminum, and glass cantilevers out over the seating. The curtain wall is articulated with aluminum frames.
The structure forms one side of Schneider Quad (formerly Baldwin Quad). It was the second building constructed on the quad.

The central, main-entrance portal is detailed as a temple with a pair of fluted columns and a flat entablature. The entry door takes up much of the space between the columns on the first floor. Three vertical windows fill the space below the entablature on the second floor.

The entry stair has been modified to create a landing and to provide for a handicapped ramp. At the front face of the flanking walls, the stone cap has been inscribed with the words “Theory” and “Practice.”
Old Chemistry Building

<table>
<thead>
<tr>
<th>Cornice and Parapet</th>
<th>Belt Courses</th>
<th>Decorative panels</th>
<th>Material Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>A heavy but simple terra-cotta cornice runs around the top of the building. A low brick parapet wall with shallow pediments at the end pavilions caps the cornice.</td>
<td>Strong horizontal lines are created by terra-cotta belt courses at the water table, below the first-floor windows, above the second-floor windows, and above and below the third-floor windows. The terra cotta has vertical lines that simulate the grooves created by stone tools.</td>
<td>Decorative terra-cotta panels are located just below the cornice above the third-floor windows and in the space between the second and third floors at the end pavilions.</td>
<td>This classical revival structure is typical of the other buildings on the quad in the use of red brick and terra-cotta detailing.</td>
</tr>
</tbody>
</table>

Fountain

A glazed tile fountain is located inside. The work appears to be by Rookwood Pottery and is covered with classical scientific iconography.

Conditions

Transformer

A green transformer box has been set in front of the building on the left side, near a secondary entrance door.
Old Chemistry Building

Conditions (cont.)

Ramp

A large accessible ramp has been located on the right side of the main entry to the building. The location and scale overwhelm the historic façade and detract from the formality of the quad. The accessible ramp is failing. Significant cracking is visible on the vertical concrete stuccoed planes. The pipe-rails are rusting at their embedments and oxide jacking is contributing to movement in the concrete.

Open Joints

At the main entry, joints in the entablature have lost mortar. The open joints allow water to run through to stain the face of the structure. Gypsum crust and efflorescence are visible. Significant cracking has also occurred.

Repointing

Above the third floor, the parapet appears to have been repointed. The color of the mortar is lighter than that found immediately below the belt course.

Terra cotta

At various locations around the building, the historic terra cotta is cracking. The image at the right shows significant damage at the right secondary entry portico. The coating on the terra cotta may have been installed to conceal crack repairs.

Terra cotta (cont.)

In what appears to be a location of a former downspout, the terra cotta was modified to allow the spout to pass through. The repair to the modification does not replicate the form, color, or texture of the terra cotta and should be replaced. Cracking can also be observed at the corner of the terra cotta.

A finish has been applied to the surface of the terra cotta. The finish has failed and is chalking.

Replacement Windows

Open joints at the terra cotta have allowed water to wash through, and in some areas, biological growth has occurred. In an effort to close the joints, it appears that a synthetic strip was placed over the joint in the terra cotta. This material has failed and is chalking. The chalk is also washing down the face of the building.

Original windows have been replaced. The new double-hung windows have sight lines that are appropriate to the period of construction.

Appendix B 121
Procter Hall
Woody Garber, 1968

Modernist

The building is designed as a low, flat spreading structure. Bands of louvers, metal panels and windows emphasize the horizontality of the design.

A steep hill has been carved out to create a flat site for the structure. On the east side, the flat area is created by a low retaining wall. The resulting areaway separates the building from the grade and potential surface water penetration.

The main floor projects out from the structure above by a full bay. The roof of the projecting portion is visible to pedestrians and automobile passengers. The projecting area, as well as the roof, is covered with a membrane roof.

The areaway is surrounded by simple steel-pipe rails. The surface of the remaining entrance bridge shows evidence that the pipe rail extended along each side as well.
The original entry to the structure appears to have faced west toward Vine Street. At the lower level, a deteriorating concrete bridge connects the building to grade over the areaway. Deteriorated concrete piers appear to have supported a bridge to the main floor. Other evidence of this entry has been removed.

A new entrance has been created on the north side, facing University Hall.

Folded metal louvers, a full floor in height, screen windows behind. The lovers are moveable by means of an attached bar.

To sheath walls, baked enamel panels are set in a regular frame. The panels are a dark burgundy in color.

The stone base has been painted a battleship-gray color.

A steel structure supports the overhang at the main floor. The structure is exposed and exhibits significant rust. It appears that this area used to be enclosed with a soffit.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Rust stains</th>
<th>Rocks falling off panels</th>
<th>Delaminating panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rust is dripping off the exposed panels to stain the stone and pavement below.</td>
<td>The stones glued to panels are falling off.</td>
<td>One fin close to ground level is open, allowing inspection of the interior structure. The layers of this panel are delaminating.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damaged panels</th>
<th>Bird droppings on west</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holes are visible in panels.</td>
<td>Birds are nesting in the steel structure and droppings are staining the painted metal panels.</td>
</tr>
</tbody>
</table>
Appendix B

Rhodes Hall

Baxter Hodell Donnelly & Preston, 1970

Precast and brick

The structure is connected to the ERC by means of a tower and pedestrian-way.

The north facade echoes the horizontality of Langsam Library across the plaza.

The photo above before ERC construction shows the verticality of the east façade.

The concrete structural grid is expressed on the plaza-side of the building. Between floor planes and columns, a glass curtain wall forms the side of the building facing Library Square.

The textured concrete catches dirt which then washes down the face during rain to stain the concrete.

Cornice

The building utilizes a simple formal vocabulary. A textured-concrete cornice represents the only ornamental gesture.
Appendix B

Rieveschl Hall, Brodie Science Center

A. M. Kinney, 1969

Brutalist

The façade is broken into vertical brick towers with window bands between. Entries are not easily discerned.

On the north side of the building, a plaza was constructed above Clifton Court Garage. The detailing of walls and ramps matches Crosley Tower.

A service drive runs below plaza between Rieveschl Hall and Zimmer Auditorium. The street is dark and uninviting.

A bridge over a service drive connects the building to Zimmer Auditorium and the Zimmer Roof Garden. The street is dark and not inviting to pedestrian traffic.
Conditions

Joint failure

Just below the hopper at the east side of the building, a diagonal crack in brick joints can be seen. A horizontal joint just above this area has also opened.

Alteration

Attachment points for some type of screens can be seen at the mullions above the entries. The screens appear to have been removed.

Sealant color

Mortar joints have been repaired using sealant. The sealant is much lighter than the mortar.

Crenellations

Large crenellations, similar in form to Crosley Tower, dominate the roof line. The crenellations were originally concrete and later covered in sheet metal.

Dark windows

Tinted glass and frames contribute to the overall dark appearance of the structure.

Banding

Dark metal bands—previously exposed concrete—appear to be the extension of floor slabs.

Dark brick

The building is clad in a dark-brown brick, atypical for the campus.
Sander Dining Hall

Brick, steel, plate glass, white rock panels

Metal cladding with a vertical pattern in a dark-bronze color has been used to clad horizontal bands.

Connection to surroundings

Glazed building surfaces, shifted building masses, and large overhangs blur interior and exterior space.

Building massing

In contrast to symmetrical massing on the north façade, other building faces are composed of projecting box forms and voids. Building materials are also arranged to emphasize individual masses.
To sheath the wall planes, the architect has used large, flat panels that are covered in a white stone. The stones are sharp and have a reflective quality.

The stone panels used to clad the building are failing. The sharp-edged stones appear to be embedded in mastic. In some areas, the mastic is completely exposed. Stones have been swept into adjacent soil areas and are forming a mulch cover.

A penthouse mechanical space appears to have been re-clad in a dark metal. The material does not match other metal panels used on the structure.

Satellite dishes and antennas have been added to the roof of the structure.

The sealant between metal panels has failed. The resulting open joints allow water to enter the structure.

The ribbed-steel cladding panels are discolored.
Appendix B

Schneider and Turner Halls

Brick base with vertical metal standing-seam, interlocking panels in recesses

Turner hall is constructed in brick with a vertical standing-seam metal shed roof. The roof material “wraps” down onto the wall.

The building has been located at a setback that matches the University Avenue Garage and Daniels Hall. The result is a large green lawn separating the dormitory from the street. A row of trees lines the street. Across the street is a Victorian-scaled streetwall.

Along Jefferson Avenue, Turner Hall presents a flat, rectilinear masonry façade with regular windows. On the campus side, the building is broken into smaller planes, and smaller-scale components address the more active courtyard. Metal and glass are the predominant materials at the courtyard and windows are larger.

Rather than being constructed as one or two large structures, the program has been broken down into smaller buildings joined by ground-level connectors.
Inside the courtyard, one-story rooms with glass curtains are topped with shed roofs. These smaller components help break down the mass of the dormitory.

Staircases are located at the corners of the structure. Sheathed in large open planes of glass, the stairs are open to exterior view.

Vistas through glass into common areas of the building.

Three single-paned windows are ganged together to create an asymmetrical window configuration.

In contrast to the massive load-bearing brick used at historic buildings, brick here is clearly expressed as a veneer and appears to float or hang above the exposed concrete foundation.

At some locations, steel-pipe columns are clad with PVC wraps.

Chalking at metal panels.

Efflorescence blooms.
The roof plane overhangs the structure below on all sides. At the field side, the overhang cantilevers a large distance and supports the upper edge of the backstop net. The roof form is an inverted triangle, presumably the shape of the supporting trusses. The roof is clad in white sheet metal.

At the top of the building, a narrow band of windows separates the solid mass from the roof structure and makes the roof appear to float.

The side facing the field is clad in a curtain wall to allow full views of the play. The wall is curved in response to the shape of the field.
Schott Stadium

Columns

Large, squat white columns support the structure on field side.

Metal cladding

The large volume of the building is clad in horizontal gray metal and recalls recently constructed buildings along MainStreet. The darker, more solid form creates a visual base for the more sculptural, dynamic roof.

Condition

Leaks

At the underside of the roof overhang, staining is visible along joints in the metal cladding.

Oil canning

The sheet-metal cladding at the large curve of the roof is oil canning.

*Evening game
Cincinnati Bearcats, 2004*
The surviving two buildings of the "Three Sisters" outline the edge of the Campus Green. Morgens Hall is a duplicate of the adjacent Scioto Hall. A third structure, Sawyer Hall, has been demolished. As a part of a large composition, the two buildings reinforce one another but have been diminished by the loss of the third "Sister." The high-rise residence buildings enjoy a bird's-eye view of the Campus Green below. The first floor of the building is inset. At the front, a colonnade is formed. This colonnaded walkway is not only a formal connection between the Sisters, but also serves as an activity area for the building tenants.
Scioto Hall

<table>
<thead>
<tr>
<th>Columns</th>
<th>Rear canopy</th>
<th>Balconies</th>
<th>Penthouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>A folded roof canopy joins the building to Scioto Hall next door. Across the front of the building and connecting to the adjacent building is a covered walkway. A folded roof form, typical of the architectural style, is supported by delicate steel-pipe columns.</td>
<td>At the rear of the building, thin concrete canopies are supported by delicate steel-pipe columns.</td>
<td>Three bands of cantilevered balconies protrude from the face of the building, providing visual relief, shading, and a connection between the indoor and outdoor.</td>
<td>A thin concrete canopy can be seen at the rooftop. It appears to be a shade structure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete frames</th>
<th>Aluminum windows</th>
<th>Mosaic columns</th>
<th>Scalloped metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>The concrete structure of the building is exposed and treated as a decorative feature.</td>
<td>An aluminum curtain-wall system including operable awning windows and colored spandrels sheaths the building. The rectilinear grid, material, and spandrel color are typical of the architectural style.</td>
<td>On the ground level, the first floor is set back and the mass of the building above is supported by large round columns. The columns are tiled in square mosaic tiles. The tiles have been painted but appear to be cream colored.</td>
<td>A scalloped metal-panel system has been used as a screen between unit balconies. The material is typical of this style.</td>
</tr>
</tbody>
</table>
Conditions

<table>
<thead>
<tr>
<th>Painted mosaic</th>
<th>Rear canopy</th>
<th>Joint failure</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mosaic tiles have been painted and the paint is failing. The tiles below appear to be a similar color. It is unclear why the tiles have been painted.</td>
<td>At the canopies on the rear of the building, concrete block walls have been erected to create what is presumed to be mechanical space.</td>
<td>At the end of each floor/roof slab, the brick joints have failed. It appears that the joints have been closed with sealant.</td>
<td>Some of the splined ceiling panels have been removed and systems are exposed under the first-floor overhang.</td>
</tr>
</tbody>
</table>
Siddall Hall

International Style

Tweddel, Wheeler, Strickland, and Beumer, 1964

<table>
<thead>
<tr>
<th>Setting</th>
<th>High-rise</th>
<th>Two-story base</th>
</tr>
</thead>
<tbody>
<tr>
<td>This structure is similar to Calhoun Hall. Together with the Marketplace structure, the relationship of these three structures was clearly intentional and creates a cluster.</td>
<td>In contrast to the mostly mid-rise earlier structures on campus, this International Style tower reflects a trend in architecture. Located at a street edge of campus, the tower helps define the campus border.</td>
<td>The curtain-wall system with ribs begins at the third floor. The first two floors are slightly recessed behind the major wall plane and dark glazing and framing contribute to the appearance of a base.</td>
</tr>
</tbody>
</table>
The ends of the building are executed in brick, making the larger planes of glass appear even lighter and more transparent.

The large curtain-wall faces of the structure are composed of dark window frames with dark interstitial panels. Separated by aluminum ribs, the windows recede and emphasize the verticality of the ribs.

The dark metal screens are being replaced with new screens of a different color. The random locations of the replacement screens detract from the intended pattern of the curtain wall and rib hierarchy.

Parapet cap coming off wall.

At the connection between the large retaining wall and the paving, concrete is spalling and steel reinforcing is exposed. The use of salts in this area contributes to the deterioration of both concrete and steel. Further oxide jacking can be expected at the exposed steel.
It should be noted that the Steger Student Life Center is the first LEED-certified building on campus.
Joseph A. Steger Student Life Center

Connectivity

Large openings have been designed at the ground level of the building. These openings create archways through which pedestrians pass to connect to the Baldwin Quad, the engineering complex, and the Mews.

Steps

To accommodate the grade change from the top to bottom along MainStreet, steps have been placed along the south side to provide transition to the first-floor building spaces. On the north side, short runs of stairs connect the various terraces of the Mews.

Colonnade

Along MainStreet, the first floor is recessed and upper floors are supported by brick piers to create a protected, shady colonnade for pedestrians.

Bridges

An open bridge connects across the Mews to Swift Hall at the Baldwin Quad. A glazed roof canopy spans the space and protects the connectors below. Materials from the Steger Student Life Center have been applied to the face of Swift and visually connect the two structures.

Roofline

The structure is finished with a flat roof, but the line of the roof is broken by projecting masses.

Angled bays

Along the south façade, angled bays protrude from the face of the smooth curve.

Linear windows

Windows are arranged in linear bands that accentuate the low, horizontal curve of the building. Solar screens are attached above the windows on the south side.

Brick base

The first floor of the structure is clad in a red brick similar to the predominant brick color used on campus.
Metal cladding

The upper floors are sheathed in a dark, horizontal, metal cladding. The joints in the cladding are staggered on an irregular basis, creating a random pattern.
The glazed roof canopy connects Steger Student Life Center (right) and Swift Hall (left).
Swift Hall
Harry Hake, 1925

Classical Revival—simplified

This structure forms one side of Baldwin Quad. It was the final building added to the quad.

Swift is connected to the Steger Student Life Center with bridges. The plaza formed between the two buildings is covered by a translucent roof.

Swift Hall is a simplified mirror of the Old Chemistry Building on the other side of Baldwin Quad.
Façade composition

The building is composed of a central block with projecting wings. The central block features an entry portico with fluted columns executed in terra cotta.

Cornice and parapet

A heavy, but simple terra-cotta cornice runs around the top of the building. A low brick parapet wall with shallow pediments at the end pavilions caps the cornice.

Material choice

This classical revival structure is typical of the other buildings on the quad in the use of red brick and terra-cotta detailing.

Tiled lobby

An elaborate tiled entry lobby remains at the central entrance. The remainder of the interior has been completely renovated.

Conditions

Repainting

Mortar joints have been repointed heavily. Mortar extends onto the face of the bricks.

Terra-cotta condition

Like the other buildings at the Baldwin Quad, the terra cotta here has been painted. Evidence of staining and repair can be seen on all sides of the building. The paint used to coat the terra cotta is chalking and washing down the face of the building.

Cornice repair

Dark mortar or sealant has been used to repoint the terra cotta. The dark color draws attention to the joints.

Around the perimeter of the building, the cornice is being held in place with metal plates and bolts.
Appendix B

Tangeman University Center, Donald Core

Georgian Revival with modern addition
The principal façade features eight-over-eight, double-hung steel windows. The windows at the new construction feature a clear-anodized, horizontal rectangular window grid. These are especially noticeable at Bearcat Plaza and at building entrances.

The interior is simple and clean. Floors are a checkered terrazzo pattern and walls are finished in white drywall.

Originally built in 1924, TUC has undergone an addition by Harry Hake in 1937 and a reconstruction by Gwathmey & Seigel in association with GBBN in 2004.

Axes
The porticos of McMicken Hall and this structure are aligned. The four-column stone portico is the major focus of the facade of the original Tangeman that remains exposed.

Multi-level entrance
The curved facades of Tangeman are complemented by the opposite wall of the Steger Student Life Center and define the MainStreet terminus at McMicken Commons.

To address the grade changes around the building, major entrances provide access to different floors. Large crowds of students can be handled by distributing the entries to multiple floors.
Appendix B

Tangeman University Center

Juxtaposition of old and new

Brick with stone panels, a water table, and a cornice define the original building which was constructed in the Georgian Revival style similar to McMicken Hall across the Commons. The original structure was topped with a gabled roof clad in slate. Brick parapets and chimneys define the gable ends.

In the renovation, a large skylight was constructed around the central tower. Substantial new additions have been made. A circular structure surrounds all but the principal façade of the original structure and another connected structure was added to the south.

The original structure was crowned with a stepped clock tower clad in zinc. Zinc cladding is detailed in two different methods. The large planes of the barrel that surround the original structure are sheathed with diamond-shaped, interlocking shingles. As a contrast, other planes are covered with horizontal bands accentuated by drip edges at alternate courses. The diamond pattern recalls the stone diamonds used to detail the original structure.

Form

The faces of the building are a study in projecting and receding planes. Overhangs create shades and at the ground level the designer has used more pedestrian-scaled elements in glass.

While many walls of the new construction are solid, a large curtain-wall window faces the stadium.

Interior atrium

The support structure for the clock tower houses a major interior stair. The skylight in the roof provides natural light to the building atrium.

Conditions

Stone staining

At the cornice of the historic structure, water has flowed over the internal gutter to stain the stone.
Rising damp

At the monumental columns of the entrance portico, dark areas of stone may indicate rising damp. The detailing of the implied base may also hold water against the column.

Juxtaposition of old and new is apparent with the clock tower and atrium skylight, and the reflection of the “Christopher Wren” cupola on McMicken Hall in the glass curtain wall of the south wing of TUC.

Conditions
Rising damp
Tangeman University Center opens onto Main-Street and Bearcat Plaza on the north side.

Conditions

Stone patching

To repair damage at one of the historic pilasters, a stone patch was installed. The patch color does not blend with the original stone.

Limestone condition

At one window sill, limestone has been damaged.
On the volume that houses the Annie Laws Auditorium, engaged columns support an entablature to create a colonnade that organizes the façade. The windows located between columns at the engaged colonnade open into the former double-high auditorium inside. These large windows have round arch tops.

The strong horizontal cornices conceal the form of the roof. A large volume extends above the building. On each side there is a small, round, operable window.

At the main entrance doors, an architrave denotes visual importance.

Classical Revival, Deco-classical building.
Teachers College is connected to Dyer Hall by a large connector.
Teachers College is the oldest of the three structures.
Stone detailing

Vertical rows of stone blocks give the impression of pilasters at the end of the façade. Centered above each row, in the upper store, is a stone disc carved with stylized figures.

Windows

Existing windows are steel, double-hung, six-over-six. At the main floor, some windows have a three-part transom. This composition creates an elongated window on the main floor.

Ironwork

Decorative iron vent covers are located at various locations on the facades.

Classical lobby

The entrance lobby has classical molding at the cornice and columns *in antis* at the opening to the corridor.

Classical lobby (cont.)

The ceiling has an elliptical vault. The floor is a black-and-white checkerboard of terrazzo.

Leaded glass

At transoms over the entrance doors and in the fanlight and sidelights at the door between the lobby and the corridor, geometric leaded glass was used. The fanlight and sidelights give the door a residential feeling.

Sconces

At the interior, white plaster sconces and decorative panels in an art nouveau style are found in the lobby.

Conditions

Stone damage

A large piece of the *torus* on two column bases has broken off. Damage to other column bases was also observed.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Stone staining</th>
<th>Open joints</th>
<th>Air conditioners</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone, especially at hoods and entablatures, is</td>
<td>Mortar loss has occurred on all sides of the</td>
<td>Window units are found on all sides of the</td>
<td>The former double-height auditorium space has</td>
</tr>
<tr>
<td>stained. The stains are the result of both</td>
<td>structure. Open joints allow water to enter the</td>
<td>structure. Condensation has dripped from the</td>
<td>been cut in half by the insertion of a dropped</td>
</tr>
<tr>
<td>atmospheric soil and gypsum crust.</td>
<td>structure.</td>
<td>units and stained the building.</td>
<td>ceiling.</td>
</tr>
</tbody>
</table>

Rust

Painted finishes at decorative wrought iron balconies have failed. Exposure of the iron to weather has resulted in rust.
The concrete structure of the building is exposed. The ends of the parking decks run the full length of the building and emphasize the horizontal orientation of the structure.

Brick towers contain the stairs and elevators. The outside of the stair towers are open and the form of the stairs is visible.

Chain-link fencing is used to form guardrails along the sides of the parking platforms.
University Avenue Garage

Conditions
Exposed steel

Guardrails

At the concrete structural piers, reinforcing steel is exposed and rusting.

Posts and rails are bent.
The University Pavilion
Leers Wiensapfel in association with GBBN, 2003

Modern

Setting

Interpenetrating volumes

The University Pavilion terminates views from University Plaza and McMicken Commons.
The building is conceived as a large cubic volume. On the south side, long bands of windows give horizontality to the structure.
From the north side, the building appears as a large glass volume embraced by a limestone volume.
A horizontal roof overhang surrounds the building on all sides, creating a cornice effect. A glass penthouse tops the structure. At the commons side, a terrace runs the length of the building.

To call attention to building entries, red metal panels are inset into the wall above each set of major doors. Horizontal flat canopies supported by stainless-steel braces protect the landings outside each entry.

The curtain wall and other glazing at the building are a bluish green glass set in metal frames finished in baked Kynar.

Sun screens protect horizontal window bands on the south façade.

Offices in a glass volume project from the flat stone surface. In the stone volume, punched windows punctuate the smooth façade. Sealant joints between the stone panels are treated as reveals. The stone is dressed in a honed finish. Below the stone, a stainless-steel base separates the building from the grade.

A paving pattern on the interior is executed in terrazzo. The pattern continues through to the exterior plaza where the pattern is executed in granite.
The exterior stair—that leads from the plaza to the commons—is reflected into the interior. Pedestrians inside and outside move parallel, on either side of a glass wall.

At doors, handrails, and other hardware, the architects have chosen minimal slick stainless steel as the material.

At the open space above the lobby, an aluminum curtain wall forms the face of offices. It is screened with horizontal maple slats that bow out into the lobby space.
The base of the structure is veneered in Briar Hill sandstone in shades of brown, tan and orange. This stone is the same as used by Hargreaves at the entrance pylons.

The six floors above the sandstone base are veneered in red brick.

The entry sequence brings pedestrians in from the street towards the University Commons.
University Hall

Lighting

The structure is lit with white sconces and pylons designed in a streamlined look similar to that sold by Poulsen Lighting.

UC Symbol

Small stone squares are inset in the brick and contain a stylized monogram of the university.

Masonry details

Guardrails also use the stylized university monogram as decorative details.

Brick pilasters run the height of the building, giving the windows depth and adding dimension to the façade.

Conditions

- **Biological growth at stone sills and belt course**
 - The porous stone appears to be holding moisture. Biological growth, significant for the age of the building, is found on all sides of the building.

- **Oxide halos at metal attachment to sandstone**
 - Wherever metal is attached to sandstone, a halo of oxide has formed. Note this particularly at lighting and reverse channel, pin-attached letters.
Unlike the majority of other campus buildings which are horizontal in orientation, this structure is a formal, tall cube. The cube sits in a plane of grass and is accessed by a large, new set of monumental granite steps. The structure aligns with the front of McMicken Hall and strengthens the original academic ridge.

The monumental entry to the piano nobile is a distyle in antis portico. This strong temple front features ionic columns supporting a pediment with decoration and is crowned by an anthemion.

Simple one-over-one double-hung windows are found on all sides of the structure. In some locations, large stone hoods protect the windows. At the rear, the pattern of windows is a typical arrangement for daylighting library stacks.
Van Wormer is the only historic structure constructed completely in stone. Inherent qualities of the stone, a warm brown-gray, have resulted in the need for numerous repairs.

Van Wormer Library

Stone
Van Wormer is the only historic structure constructed completely in stone. Inherent qualities of the stone, a warm brown-gray, have resulted in the need for numerous repairs.

Dome
As part of the recent renovation, the dome, long missing from the structure, was replaced with a modern interpretation. The new dome is a glass structure that provides daylight to the restored central lobby.

Rotunda
Previous renovations to the structure eliminated the open space of the central rotunda in favor of offices. The recent renovation reopened the central space. Especially notable here is decorative plaster work and the gallery railing.

Vestibule
Just inside the main entrance doors, one enters a vestibule clad completely in gray-white marble.

Conditions

Granite base
In the recent renovation, the grade around the structure was changed to allow for an accessible entrance and to correct moisture flow. At this time, the stone base was veneered with gray granite.

Stone condition
On all sides of the structure, various campaigns of stone repair can be observed. The color of the stone varies significantly, making the matching of patches difficult.

It is assumed that the recent renovation did not address movement in the stone. Crack monitors remain on the exterior of the building.

At various locations, but most noticeably at the east façade, stones have been replaced. At the area of replacement surrounding the stack windows, significant quarry sap is visible.
During the recent renovation, the original stairs were replaced with new granite steps and flanking walls as well as new handrails.

The recent renovation made the first floor accessible. The grade has been altered, windows replaced, and a new accessible entrance added on the north side.
Van Wormer Library
The building is elevated from University Commons to the west. A stepped amphitheater serves as a visual base to the structure.

The cruciform plan was chosen to separate office and teaching space from the laboratories. The blocks that form the legs of the cross meet at the apex where they are connected by a lobby space. Glazed volumes join the legs and the crossing.

The masses that make up the four legs of the cross plan twist up from the ground plane, giving a sense of movement and dynamism to the form. The blocks appear almost like gelatin in a bowl.
Irregular forms

Irregularly shaped windows curve to correspond to the curved faces of the brick exterior.

Curtain wall system

Windows protrude from the brick plane, their faces covered with a glazed curtain-wall system. The glass extends beyond the sides of the window frames. The glazing frame system creates a grid over the face of each window.

Corner detail

To conceal the edge of the brick panel system, the architect has used galvanized-steel angles at the corners.

Brick panel grid is expressed

The building is clad in pink brick formed into panels and attached to the structure. The joints between the panels are made visible by a recessed sealant joint between panels.

Gravel band

The building is separated from the lawn area by a mow strip of white gravel.

Handrails

Galvanized-pipe rails on the exterior are detailed with a copper end cap.

Open atrium

The glazing that connects the legs to the crossing allows daylight to flood the atrium space above the lobby.

Office layout

Offices line the perimeter of the office wings to take advantage of natural light. Inside, large boxes covered with plywood form additional office space. Bright lighting is placed on top of the plywood boxes to illuminate the ceilings and accentuate the volumes created.
Vontz Center

<table>
<thead>
<tr>
<th>Freestanding stairs</th>
<th>Auditorium</th>
<th>Bathrooms</th>
<th>Lighting sources hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sculptural stairs connect the interior floors.

On the ground floor, an auditorium occupies one of the legs of the cross form. The interior of the auditorium is simple with exposed systems and large planes of plywood forming the sidewalls.

Bathrooms are tiled in a dynamic pattern, echoing the tilted and active form of the exterior.

Where gypsum-board ceilings meet plywood-clad elevator and service cores, recessed lighting separates the connection of planes and washes down the face of the plywood.

<table>
<thead>
<tr>
<th>Furnishings</th>
<th>Plywood, drywall, and slate floors</th>
<th>Stainless steel doors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature Gehry bentwood chairs are found in the lobby areas.

Interior materials are simple and include plywood, drywall, and slate floors.

In contrast to the warm materials of slate and wood, the doors to the laboratory spaces are clinical stainless steel.
<table>
<thead>
<tr>
<th>Conditions - Diagonal cracking in brick</th>
<th>Failed sealant</th>
<th>Efflorescence and seepage</th>
<th>Entrance canopy dirty</th>
</tr>
</thead>
<tbody>
<tr>
<td>The brick panels are cracking. Diagonal cracks are visible at the upper corners of the building.</td>
<td>Sealant between panels has failed, allowing water to penetrate the joints. Biological growth can be seen at the moist areas.</td>
<td>Efflorescence can be seen on the surface of bricks. At some areas, the flood of water has created white seepage stains, indicating substantial movement of moisture.</td>
<td>The main entry to the lobby is through a glazed vestibule. The glass is extremely dirty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plywood condition</th>
<th>Haze on interior bricks</th>
<th>Aluminum panels removed to access drainage</th>
<th>Leaking overhead glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The plywood panels, a signature material for the architect, are being scuffed and scratched.</td>
<td>At the lobby space, a hazy film has settled on the bricks.</td>
<td>It appears that the internal drainage system designed to remove water from the glazed skylighted areas has required repair. Aluminum panels have been removed to allow access to the drainage system.</td>
<td>Water is penetrating the joint between the glazing and walls.</td>
</tr>
</tbody>
</table>
Appendix B

Wherry Hall
Kruckmeyer and Strong, 1959

Modernist
The simple volumes of Wherry Hall are clad in mottled brown brick with iron spots.

The building is an assembly of large solid volumes arranged asymmetrically.

A single-story bay projects from the face of the building. The street-facing façade is clad in limestone.

Secondary-entrance porches are located at corners of the brick structure. The entries are clad in stone and create a shady covered space in front of doors.
Wherry Hall

<table>
<thead>
<tr>
<th>Stone cap</th>
<th>Carved screens</th>
<th>Window details</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The edges of the flat roof are detailed with thin stone bands.</td>
<td>Decorative carved stone screens can be found at each side of the entrance stairs.</td>
<td>The perimeter of each window opening is trimmed with a thin stone band. Windows are divided into thin horizontal sashes that are assumed to be operable jalousie panels. Small vents are located above each window, creating a simple pattern.</td>
<td>The decorative limestone at the east face of the projecting bay is damaged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry stairs are heavily damaged</th>
<th>Visible utility cables</th>
<th>Stone damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>The entry stairs are seriously deteriorated. Salts used to de-ice steps have accelerated deterioration. Sealant has failed, stones are cracked, and efflorescence covers the stone. Recessed step lights are closed. Some of the stone steps have been replaced.</td>
<td>Cables have been draped across the front of the projecting bay.</td>
<td>The stone trim around the openings at corner entries is broken.</td>
</tr>
</tbody>
</table>
Conditions (cont.)

<table>
<thead>
<tr>
<th>Vertical cracking</th>
<th>Diagonal cracking</th>
<th>Brick foundation is visible below stone base</th>
<th>Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vertical crack runs the full height of a wall at the corner. There are no expansion joints in the masonry.</td>
<td>Near the top of the building, a diagonal crack is visible in the masonry. This crack should be investigated.</td>
<td>Below the stucco band that forms the base of the building, brick is visible. This could be evidence that the grade has been changed.</td>
<td>Below mechanical louvers, water has deposited corrosion on the face of the building.</td>
</tr>
</tbody>
</table>
Unlike the other structures of the academic ridge, which sit up on a hill removed from the public way, Wilson Auditorium is pulled much closer to the sidewalk. Events held in the auditorium drew citizens of Cincinnati to the campus. The more-public connection between this structure and the street reflects the unique relationship of the building to non-university visitors.

At the east, rear elevation, the pediment over the doorway is split at the apex and a window is slipped down to rest on the bed.
Wilson Auditorium

Stonework

At the dressing- and practice-room wing, steel double-hung windows are aligned in a panel sheathed in stone.

The three-bay entrance is executed completely in stone.

Without windows to break up the large side facades of the auditorium, the architect used large, tall stone panels with bas-relief sculpture to provide visual relief and focus.

Metalwork

Above each pair of entry doors there are intricate screen transoms with chevron detailing.

Material associations

Like many of the early buildings on campus, Wilson is constructed of red brick and limestone.

Seating

Original auditorium seating with cast decorative details still remains.

Auditorium grills

Decorative plaster bands wrap up the walls and across the ceiling. Located on the walls and ceilings are large, decorative grilles.

Light fixtures

Throughout the building, original streamlined light fixtures remain.
Skylight
A large skylight, which originally lit the backstage area, tops the east end of the volume.

Library fireplace
The library chimney breast is covered in carved limestone. A memorial inscription is carved into the stone.

Stairwell lighting
Above the stairs, the ceiling steps and is highlighted by light strips.

Wood paneling
The lobby is completely sheathed in walnut. The figured paneling covers not only the walls, but also the ceiling to create a dramatic interior.

Metalwork
Ticket office iron screens.

The tops of newel posts at the exit stairs are capped with aluminum in a geometric pattern.

Exit stair railings are detailed in streamlined aluminum and steel.

Appendix B 179
At the walls flanking the entrance doors, limestone is severely deteriorated due to the use of salt on the steps.

Stone steps are wearing badly. Open joints allow water to enter the structure.

Light fixtures selected for use on the exterior of the building are not appropriate to the style of the structure.

Front doors have been replaced with inappropriate solid steel utility doors.

Steel casement windows in all locations are exposed to the elements and are rusting.

Limestone is stained by atmospheric dirt and gypsum crust.

At the intersection of volumes, significant brick displacement has occurred.

Water has entered the roof over the library and caused damage to the decorative plaster ceiling.
Appendix B

Wolfson Hall
Tweddel Wheeler-Strickland Beumer, 1976

Brutalist concrete with metal panels
The concrete construction of the building is exposed in a brutalist manner. Floor planes, beams, and round columns create visual interest on the otherwise unadorned structure.

Tower
A concrete tower is connected by a beam to the main building at the entry, creating an entrance gate.

Light well
At the entry plaza, a light well provides daylighting to basement spaces.

Metal panels
Metal panels enclose volumes of the building. The one pictured appears to be a former open stair that has been enclosed.
Appendix B

Wolfson Hall

<table>
<thead>
<tr>
<th>Pre-cast concrete panels</th>
<th>Conditions</th>
<th>Railings</th>
<th>Rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracking</td>
<td>Railings at the light well are bent.</td>
<td>Exposed steel at window edges is rusting and causing the window to be displaced.</td>
<td></td>
</tr>
<tr>
<td>Pre-cast-concrete panels are cracking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filling the space between concrete beams are tall, narrow pre-cast concrete panels. These appear to be replacements.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposed rebar</th>
<th>Paint failure</th>
<th>Water runoff</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar is visible at the underside of the balcony. It is rusting.</td>
<td>Paint at the vertical metal-panel system is failing.</td>
<td>Water from the plaza is running under the brick walls and dripping down the face of the concrete, leaving large white stains.</td>
<td>Exit stairs appear to have been enclosed with a white metal-panel structure. The loss of the open stairs and the visual interest they might have provided makes the structure boxy and lifeless.</td>
</tr>
</tbody>
</table>

Maintenance

Building expansion joint failure.
The structure is built into a steep hill. This allows a main entry on the sidewalk level but also a walk-out basement level with full windows. Fully glazed bays protrude from the main plane of the brick façade. The bays are capped by a crenellated parapet with stone scuppers to remove water. Crowning each chimney stack is a clustered chimney pair.
Copper gutters surround the building. These feed into decorative collection boxes and copper downspouts.

The foundation and basement are covered in stucco. Above, red brick with random dark glazed headers forms the wall structure.

Reflecting the original purpose of the structure, large, open rooms are found on the public first floor and basement below.

In the great room, the ceiling is decorated with beams and half-timbering. At the end of the grand room is a raised performance platform.

A large stone fireplace mantelpiece and overmantel are centered on the long wall of the major public room. The seal of the university is carved at the top.

On-center across from the stone fireplace, a shallow Juliet balcony allows observation of the great room.

A screen of Tudor arches divides the grand room from an adjacent open space.

On the lower level, immediately below the large first-floor room is another room of the same plan. The ceiling is not high, but a similar stage platform is constructed at one end.
Across the north side of the first floor, a solarium provides daylight to the public spaces and views across campus.

On the east side of the entry hall, a suite of offices remains in its original configuration.

Individual rooms are located on the floors above. They share a common, central bathroom on each floor.

In the entrance lobby, a grand wooden stair case leads to an intermediate landing and Juliet balcony to the main hall. The stair continues to the upper-floor residential rooms.

A glass skylight provides light to the second-floor resident’s kitchen.

Original equipment such as a blackboard cabinet and dumbwaiter shaft remain.

The plaster walls are finished with a rough texture. In places, the white paint has peeled to reveal the original plaster colors.

Wide-planked wood floors stretch across the main public space.
Water has penetrated the stair structure and has stained and damaged the stucco covering the exterior walls.

Additional investigation is required to understand the extent of damage.

At the connection between the stucco foundation and the stone at the bay, a joint has opened.

The hand-thrown brick is spalling, especially at the upper portions of the walls and chimneys.

Panes of glass are missing from the multi-light door to the solarium.

Acknowledging the damage to the mortar at the chimney, the joints have been repointed. The pointing color is brighter than surrounding mortar and is likely high cement mortar.

The doors to the stone entry vestibule have been removed.
The slate roof looks very worn. It is unclear whether this was the design intent or the result of aging. The roof should be thoroughly investigated.

The paint on the steel casement windows is deteriorated. As a result, the frames are rusting. Associated wood framing is also rotting.

The iron fire escape has no ladder.

At the scupper used to drain the roof of the bay, the sealant has failed.
Appendix B

Zimmer Hall

Glaser, Myers, and Associates, 1970

Rooftop plaza

A grand, sculptural stair ascends to a roof garden on top of the auditorium.

Concrete buttresses

The roof garden looks down into Library square and forms the centerpiece of a quad.

Along the north side of Zimmer Auditorium, two-story high buttresses support a deep, ribbed, concrete cornice. The buttresses have a pebbled finish.
Zimmer Hall

<table>
<thead>
<tr>
<th>Windows</th>
<th>Balcony</th>
<th>Brick pattern</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between the buttresses, large planes of dark glass are set in dark bronze aluminum frames. Window mullions are arranged in a symmetrical grid pattern.</td>
<td>Along the north lobby, the floor adjacent to the auditorium is open between floors.</td>
<td>Patterned brick walls form the auditorium side of the lobby space.</td>
<td>Exposed rebar. At the entry cornice, rebar is exposed and rusting. Oxide jacking is opening a crack in the concrete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete stains</th>
<th>Windows</th>
<th>Brick stains</th>
<th>Repointing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water seeps off the roof garden above and is staining the face of the concrete.</td>
<td>Seals at the insulated windows have failed and the glass appears etched.</td>
<td>At the east side, facing Library Square, reinforcing in the brick wall is rusting. Rust is staining the face of the bricks.</td>
<td>At the brick facing Library Square, salts used on the plaza have deteriorated the mortar. A shallow mortar slurry has been applied over the joints, but this coating has also failed.</td>
</tr>
</tbody>
</table>
Photography for Appendix B was supplied by John Milner Associates, Inc. and courtesy of the following offices of the University of Cincinnati:
Academic Health Center Photo Services
Administration and Finance, Planning + Design + Construction
University Libraries
 Archives & Rare Books Library
 University Digital Collections
University Photo Services
Appendix C

Landscapes: Character Defining Features and Condition Assessment
Baldwin Quad is the only Beaux Arts-style space on the University of Cincinnati campus. Its rectangular volume of space is activated by use of the surrounding buildings, which front on the quad. The oak trees along the edge are too young to provide effective shade at present, but will ultimately contribute to the usefulness of the space.

The quad’s simple design is made more dynamic through the establishment of a curving system of walks juxtaposed against a straight system that reflects the orientation of the buildings that form the quad. The curving walks relate to the geometry of nearby McMicken Commons, and help to tie together open spaces that relate to two different organizing systems or “force fields.”

A memorial sundial with a commemorative plaque previously sat in front of Baldwin Hall, it has since been repositioned in front of the reconstructed stone bench honoring Dean Herman Schneider. The analemmatic sundial has been reset and keeps time.
Two types of lighting standards occur within the quad: the ball in basket and plaza disc light (shown).

Relatively level with crown.

Swamp white oak has been planted along the north and south perimeters of the space. Hornbeam is planted along the foundation of Baldwin Hall.

Yew, hornbeam, and boxwood are planted in association with the front of Baldwin Hall.

The front of Baldwin Hall is edged by a plaza. An ADA ramp leads up to the plaza, which is edged by a brick and granite wall, which can be used as a seat wall for gathering, waiting, or sunning.

Liriope beds have been used to unify the plantings in front of Baldwin Hall.

Trash receptacles, signage, and bike racks associated with the quad relate to campus standards. The granite benches near the entrance to Baldwin, however, are unusual for the campus.
Bearcat Plaza is a triangular open space that occupies the area between Nippert Stadium, the Tangeman University Center, and the Steger Student Life Center. Located at the heart of MainStreet, Bearcat Plaza is a popular site for informal musical performances and social interaction.

The University of Cincinnati is relatively unusual in maintaining a major football stadium at the heart of the campus. Bearcat Plaza takes full advantage of its position overlooking the stadium, marking views in with pylons, and orienting site features to the view.

As elsewhere along MainStreet, the route along this connective pedestrian system is lyrical, and punctuated by events such as this granite stair. The stairs shown here edge the landing overlooking Bearcat Plaza, helping to contain the space of the plaza, and provide various social and interactive opportunities.

From Bearcat Plaza, it is possible to sit and watch activities occurring on the field below. The stadium is used for various activities in addition to football games, including intramural sports.
Light poles, banner carriers

The luminaires utilized throughout MainStreet are standardized (Plaza Disc Light). Light poles are fitted with banner hangers. The banners utilized reflect the graphic identity of MainStreet.

Tree plantings

Ginkgos and Chinese elms serve as street trees within the plaza.

Tree grates

The university uses a set of standards for features such as tree grates. Within MainStreet and Bearcat Plaza, the grates work well with the color of the plaza pavers.

Slotted drains

Slotted drains are another feature that follows a standard design and is used consistently throughout the plaza. The character of the drains is consistent with the tree grates.

Interlocking concrete pavers, used as permeable segmental pavers in association with tree plantings

The graphic identity of MainStreet is expressed through a consistent pavement. The interlocking concrete pavers of varying hues, ranging from gray to rose, soften the expansive paved area of MainStreet.

Where pavers are used in close association with trees, they were installed with voids to allow air and water to penetrate to the roots below. The crevices are filled with haydite, a light stone particle. The pavement is engineered for fire access.
Bike racks
Bike racks are also consistent with design standards applied to the campus.

Table and chairs
Black metal tables and chairs provide seating for eating outside on the plaza. The character of these features is consistent with the bike racks.

Pylons
Brick and limestone pylons edge the perimeter of the stadium and act like a permeable and celebratory edge to the stadium. They recall the pylons at the campus entrances.

Trash receptacles
The trash receptacles and recycling receptacles are consistent with campus standards.

Conditions
Cracked concrete
Some of the concrete slabs and steps that edge the plaza are cracked.

Tree grates
Tree grates are damaged by maintenance and other vehicles driving over them. They are very expensive to replace.

Stone dust between pavers (haydite) difficult to retain/maintain
There are various problems associated with this material. Maintenance personnel must work to stockpile the material, users complain of shoe heels getting stuck in the spaces, and the material blows out of the spaces between pavers.
Bearcat Plaza

Stadium viewing area from Bearcat Plaza. Nippert Stadium seating is pictured in the foreground.
Campus Green

Campus Green is the largest open space on the University of Cincinnati campus. The greensward extends over approximately six acres, replacing a large parking lot that served the northern portion of the West Campus. Features that comprise the design include fountains, arboretum plantings, seating areas, a sinuous sculptural walkway, a light tower, and large expanses of turf. Campus Green is a major thoroughfare, connecting East and West Campuses, and was a key component of the university’s transformation from a commuter to a pedestrian campus.

Mound

One of the primary elements of the Campus Green is a sculptural earthen mound located along Martin Luther King Jr. Boulevard. The mound is intended to recall the prehistoric mounds of local Native Americans. The mound is edged by a sign identifying the campus. Access to the lower portion of the mound is afforded by a system of concrete walks. The mound is planted with an evergreen groundcover, wintercreeper euonymus.

Campus entrance/identity sign

The campus entrance at University Way is designed to complement the mound. The sign is similar in character and materials to others located at entrances into the campus, utilizing Briarhill sandstone and applied bronze letters.

Braided walk

One of the character-defining features of Campus Green is the braided walk. A winding, intersecting system of concrete walks, the braided walk is an abstraction of the ancient stream that once ran through this area. The walk is edged by a cobble storm-water drain, tree plantings, lighting, and fountains. The walk leads between Martin Luther King Jr. Boulevard and the walk edging Sigma Sigma Commons.
Drainage associated with the braided walk system is conveyed along "V"-shaped runnels comprised of concrete block formed to look like cobbles and granite curbing. Drains are sited at intersections with other paths and features.

A system of cascading fountains edges the braided walk. The fountains are low retaining walls comprised of stacked and battered granite block set in arcuate forms. Granite seatwalls sometimes edge the fountains along the walk.

The braided walk is sometimes edged by a linear planting of upright hornbeams. The hornbeam has been utilized historically to create aerial hedges as its branches may themselves grow together into a braided form. These trees were selected to reinforce the concept of the braided walk.

Another tree incorporated into the design of the braided walk is the bald cypress. A species that is well adapted to wet environments, the bald cypress recalls the ancient stream corridor, and accompanies many of the fountains to suggest a connection to water.

Lighting along the braided walk is provided by a series of "light stick" luminaires designed specifically for the Campus Green.

Geometric earthworks also edge the braided walk.

Groupings of trees and shrubs arranged into associations of plant families are planted along the braided walk and within the berms along the braided walk. Each specimen is identified by a concrete and aluminum marker. Plant families represented include maple, serviceberry, elm, oak, redbud, beech, lilac, linden, magnolia, crabapple, and birch.
Campus Green

<table>
<thead>
<tr>
<th>Straight walks</th>
<th>Lighting</th>
<th>Open lawn</th>
<th>Plazas</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of the braided walk, and a counterpoint to its sinuous lines, is a series of straight concrete walks. These edge the 1960s dormitories, and angle off (as shown) toward the light tower and Sigma Sigma Commons.</td>
<td>Lighting along the straight walks incorporates the ball-in-basket standard found in many other parts of the campus.</td>
<td>To the east of the braided walk is a large expanse of turf grass. The level plane affords good views of the light tower sited near the end of Campus Green.</td>
<td>Also to the east of the braided walk along the straight and angled paths is a series of seating areas. These areas are relatively level paved plazas for sitting and gathering. The surface material of the seating areas is decomposed granite. The areas include site furnishings, donor plaques, and tree plantings such as sweetbay magnolia, amur corktree, and zelkova.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evergreen screen planting</th>
<th>Light tower</th>
<th>Exercise stations</th>
<th>Trash receptacles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen trees planted along the straight walk form a screen along the margin of the 1960s-era dormitories. The evergreen trees are Norway spruce.</td>
<td>A sculptural tower sits at the southern end of Campus Green. At night the tower emits lights, which change colors. The tower is a memorial piece. The tower was designed by Jorge Silvetti and Rudolpho Machado of Boston, Massachusetts.</td>
<td>Site furnishing and features associated with Campus Green include a system of exercise stations as shown here. Black painted metal pieces of contemporary and unadorned design are typical of the system.</td>
<td>Also of black painted metal and a contemporary design are the trash receptacles utilized within the landscape.</td>
</tr>
</tbody>
</table>
Campus Green

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Donor plaques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arboretum plaques</td>
<td>Some of the features of the Campus Green landscape are attributed to the largesse of donors. The individuals and organizations that contributed to the implementation of these design features are identified with granite markers inscribed with their names. These occur within the arboretum and the seating plazas.</td>
</tr>
<tr>
<td>Fountains</td>
<td>Mowing activities have led to a deterioration of some of the arboretum plaques. The concrete bases have been damaged in some instances; in others, the aluminum inset has been detached from the concrete base. Many of the labels (and tree specimens) are sited in between the berms that wind through the western portion of the Campus Green. It may be difficult for visitors to access some of the labeled specimens and read the plaques due to the undulating landforms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mow lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospect denied</td>
<td>The edges of the sinuous landforms have taken on a banding through regular mowing. This may lead to rutting from the mower wheels, or decline of the grass in linear patches. The slope of the berms renders them difficult to mow.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th>V-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water is frequently blown out of the fountains across the walk, which may lead to deterioration problems and slip hazards.</td>
<td>The walkway associated with the mound does not extend to the apex of the landform. People seeking the view from the top have cut a social trail through the euonymus, leaving a gash in the planting, on axis with the view of the campus identity sign along Martin Luther King Jr. Boulevard. These features must be cleaned constantly as they collect and exhibit refuse prominently.</td>
</tr>
</tbody>
</table>
Campus Green

Conditions

<table>
<thead>
<tr>
<th>Triangular junctures</th>
<th>Joints between materials</th>
<th>Evergreen wall</th>
<th>Entrance features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular junctions and joints are difficult to maintain, particularly plantings included within the end section. The liriope planted in the small spaces between the walks and the plazas has died near the ends of the planting areas.</td>
<td>It is also difficult to maintain joints and seams that occur in triangular forms.</td>
<td>The screen planting of evergreens may deter residents of the adjacent 1960s-era dormitories from using the Campus Green landscape.</td>
<td>Many of the sandstone pylons associated with the campus entrances have been damaged by lawn mowers. The university has established concrete bases around many of the pylons to prevent mowers from reaching their bases and causing further damage. The university is investigating appropriate repair methods.</td>
</tr>
</tbody>
</table>
Campus Green
The CCM Plaza is an urban-style courtyard space that knits together various buildings connected with the music school: Corbett Auditorium, Mary Emery Hall, Memorial Hall, and Dieterle Vocal Arts Center. The plaza is characterized by a generally square area paved with brick and concrete. The central portion of the plaza is a circular vehicular turnaround that is also heavily utilized by pedestrians. Alternating steel balls and bollards mark the limits of vehicular use within the plaza. Steps lead down into the plaza on the north; the west, south, and southeastern edges of the plaza are contained by buildings and embankments. Seatwalls and stairs that can be used as seating also edge the central open space, which is popular as a performance space. The plaza is well-proportioned to human scale. Tree plantings are utilized to bring seasonal interest and organic form into the geometric space. The plaza showcases an evocative sculpture by Magdalena Abakanowicz.

Concrete bands radiate from the central planting bed, breaking up the expanse of brick. The species included in the central planting bed include tulip poplar, green ash, and periwinkle.

The central circular form of the plaza that acts as a vehicular turnaround is reinforced by the circular placement of steel bollards. The steel bollards are composed of alternating posts and balls.

The generally square form of the space between Mary Emery Hall, Corbett Auditorium, Memorial Hall, and the Dieterle Vocal Arts Center is characterized by an urban-style paved plaza. The brick and concrete pavement is composed of a circular form within a square. The circular form is indicated through an inner circular planting bed and an outer ring of bollards that mark the extent of vehicular paving.
A memorial garden exists above the parking-garage entrance that extends beneath the plaza. Plantings include cotoneaster, geranium, crabapples, moonbeam coreopsis, salvia, ornamental grasses, and coneflower. A bench with a plaque commemorating Patricia Berlin sits within the garden.

Steps lead up to Memorial Hall from the plaza. Plantings occupy the bank below Memorial Hall. Trees include Carolina silverbell, pagoda dogwood, Northern red oak, yellowwood, green ash, and white redbud. Periwinkle and bugleweed serve as groundcovers.

Lighting associated with the plaza is the plaza disc light standard.

Sculpture set within the plaza is part of the university's art collection. The sculpture is made of bronze.

Steps outside of the Dieterle Vocal Arts Center and below a brick plaza at the building entrance are long, wide, and generous, and can serve as informal seating.

A memorial garden exists above the parking-garage entrance that extends beneath the plaza. Plantings include cotoneaster, geranium, crabapples, moonbeam coreopsis, salvia, ornamental grasses, and coneflower. A bench with a plaque commemorating Patricia Berlin sits within the garden.

Steps lead up to Memorial Hall from the plaza. Plantings occupy the bank below Memorial Hall. Trees include Carolina silverbell, pagoda dogwood, Northern red oak, yellowwood, green ash, and white redbud. Periwinkle and bugleweed serve as groundcovers.

Lighting associated with the plaza is the plaza disc light standard.

Sculpture set within the plaza is part of the university's art collection. The sculpture is made of bronze.

Steps outside of the Dieterle Vocal Arts Center and below a brick plaza at the building entrance are long, wide, and generous, and can serve as informal seating.

A memorial garden exists above the parking-garage entrance that extends beneath the plaza. Plantings include cotoneaster, geranium, crabapples, moonbeam coreopsis, salvia, ornamental grasses, and coneflower. A bench with a plaque commemorating Patricia Berlin sits within the garden.

Lighting associated with the plaza is the plaza disc light standard.

Sculpture set within the plaza is part of the university's art collection. The sculpture is made of bronze.
<table>
<thead>
<tr>
<th>Conditions</th>
<th>Memorial bench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of tree</td>
<td>The bench is not stable. It may have been dislodged by a mower. The seat is not founded and rocks on the base stands.</td>
</tr>
</tbody>
</table>

One of the trees planted at the margins of the circular portion of the plaza has been lost. This tree was planted almost directly in front of the door of the Corbett Auditorium, which may have been a bad placement for physical and visual accessibility to the building.
The Cincinnati Observatory Center is located near the intersection of Observatory Place and Avery Lane near Observatory Avenue due east of the main university campus area. The Observatory building sits atop a broad knoll characterized primarily by turf grass. The open area that surrounds the Observatory is edged by deciduous woodland that marks the location where the knoll begins to drop away more steeply. The landscape associated with the Observatory is pastoral, marked by turf lawn dotted with ornamental and shade trees. Landscape features include an access drive with a circular turnaround, parking area, walkway system, outdoor seating plaza, etched stone and concrete plaques and pylons, site lighting, and a historical marker.

The Cincinnati Observatory Center property includes two brick and stone buildings, composed of limestone foundations and sandstone ornamentation, sited atop a prominent knoll and along a circular turnaround drive. The buildings are generally surrounded by open turf lawn. Large white pines flank the entrance to the main building.

The smaller building is known as the O.M. Mitchell Observatory. It is sited to the east of the main observatory building. Small flowering trees have been planted near the entrance.

An asphalt entrance drive leads to the Observatory complex, terminating in a circular turnaround that also accommodates parking. The smaller building is located beyond the photograph to the right.
Parking

Parking occurs along the margins of the circular vehicular turnaround.

Entrance walk

A brick walk leads from the parking area to the front entrance of the larger Observatory building. The brick walk also connects to a brick plaza/seating area located east of the building.

Stairs and porch

The front of the building is accessed via a sandstone stair. Metal urns flank the stair and are set on posts at the base of the cheek-walls. The front of the building includes a porch with a limestone pilaster railing that sits below the portico and four columns that mark the building entrance.

Secondary building entrance stair

A short brick walk also leads to a stone stair at the entrance to the smaller Observatory building. The stair is framed with wooden columns and metal urns. Another walk leads north to an ADA-accessible entrance.

ADA accessible entrance

The brick walk also connects to a brick ADA-accessible ramp that leads to a separate entrance into the building. The ramp is edged by painted metal handrails. The base is fashioned from stonework that recalls the front stair.

Turf lawn

Turf lawn surrounds the Observatory buildings.

Trees at edge of knoll

The lawn is edged by a stand of trees. The trees generally mark the site where the knoll landform begins to drop away more steeply.

Ornamental and shade-tree plantings

The lawn is also dotted with ornamental and shade trees. There are also a few evergreen specimen trees.
<table>
<thead>
<tr>
<th>Shrub border</th>
<th>Outdoor seating area</th>
<th>Site lighting</th>
<th>Etched markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A row of burning bush euonymus.</td>
<td>A brick plaza with black painted metal site furnishings occupies a portion of the space between the two main buildings along the circular turnaround.</td>
<td>Site lighting utilizes a luminaire with a historic character.</td>
<td>A pair of etched limestone blocks set in a circle of Belgian block and crushed stone sits on the lawn surrounding the Observatory.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Etched stones</th>
<th>Historical marker</th>
<th>Conditions</th>
<th>Piled construction material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A series of etched stones is set in the lawn. The sun and planets of the solar system are marked by the stones.</td>
<td>An Ohio Historical Marker notes the age and significance of the Observatory complex. The marker is set along the circular turnaround.</td>
<td>Construction materials that appear historic are piled in at least two locations on the Observatory property – shown here along the base of a building, and above in association with the burning bush shrub border.</td>
<td></td>
</tr>
</tbody>
</table>

Cincinnati Observatory Center (1873)
Cincinnati Observatory Center (1873)

Photograph of the newly built Observatory, 1873.

Postcard of Observatory, circulated in the early 20th century.
Clifton Arc is considered to be the primary entrance to the campus, is the first view that many people have of the University of Cincinnati and one of its most visible landscapes given its location overlooking Clifton Avenue. The characteristic features of the arc are its sloped greensward, dotted groupings of mature trees, arced access drive (McMicken Circle) and associated concrete walks, stairs, and lighting, a gatehouse, and signage. Although many of the individual elements of the arc landscape have changed over the years, the overall impression has remained of a pastoral park-like landscape for many decades.

<table>
<thead>
<tr>
<th>Concrete walks along McMicken Circle</th>
<th>Concrete walks along Clifton Arc</th>
<th>Concrete steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>The concrete walks that edge McMicken Circle as it approaches various campus buildings are wide and generous.</td>
<td>The concrete walks on the western edge of Clifton Arc are very narrow.</td>
<td>A long straight flight of concrete steps leads to the entrance of McMicken Hall from Clifton Avenue. Art deco-style metal handrails are associated with the walk near its apex. These are also found on the McMicken Commons side of the building.</td>
</tr>
</tbody>
</table>
A historic lighting standard is used in proximity to McMicken Hall that does not appear to be utilized elsewhere on the campus except within the Teacher's College/Dyer Hall quad.

Cobra-style lighting is used along McMicken Circle.

The pastoral and park-like appearance of Clifton Arc is due in great part to the expanse of maintained turf lawn that dominates the open space.

The top of the flight of concrete stairs is marked with a concrete landing that has been scored in a radial pattern.

A wide variety of shade and ornamental trees are planted singly and in groups within the arc landscape. Tree species include horsechestnut, maple, blue spruce, elm, oak, Kentucky coffeetree, beech, scholar tree, sweetbay magnolia, saucer magnolia, paperbark maple, ginkgo, sugar maple, arborvitae, hornbeam, buckeye, sycamore, London plane tree, catalpa, sawtooth oak, and green ash.

Trees and shrubs edge McMicken Hall. Shrubs include juniper, yew, boxwood, currant, star magnolia, and bottlebrush buckeye.

Groundcover plantings, particularly English ivy, are also part of the planting palette of Clifton Arc.

Trees and shrubs edge McMicken Hall. Shrubs include juniper, yew, boxwood, currant, star magnolia, and bottlebrush buckeye.

Groundcover plantings, particularly English ivy, are also part of the planting palette of Clifton Arc.

Paved in asphalt, McMicken Circle is used as a drop-off route for the university.
Gatehouse

A manned gatehouse at Clifton Avenue provides assistance to visitors, and is also used to control access to the campus.

Signage

Signs in the Clifton Arc landscape are consistent with those used elsewhere on campus.

Stone lions at building entrance

Mick and Mack the lions greet visitors at the entrance into McMicken Hall.

Tree well/retaining wall

One of the trees on the green includes a tree well, which may relate to a regrading effort.

Conditions

<table>
<thead>
<tr>
<th>Trees</th>
<th>Shrubs</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some of the trees (beech, elm) within the landscape are in decline. A plan for replacement of the trees will be needed. The university takes special care with the campus’s older trees.</td>
<td>Some of the shrubs (boxwood, yew) and trees (hornbeam) in front of McMicken Hall are in decline, or are difficult to maintain in their current overmature condition. A plan for replacement will be needed.</td>
<td>Some of the drainage systems appear to be in need of repair.</td>
</tr>
</tbody>
</table>
The College of Design, Architecture, Art, and Planning (DAAP) is housed in a collection of buildings located in the northwest corner of the West Campus. The firm of Hargreaves Associates was commissioned to design the landscape associated with the college in the mid-1990s. Hargreaves's design incorporates sculptural earthen forms and grids of tree plantings to complement and complete the complex of buildings unified by the 1996 construction of the Aronoff Center for Design and Art. The new design, characterized by long, sinuous berms that follow one another uphill toward the intersection of Martin Luther King Jr. Boulevard and Clifton Avenue, works in harmony with existing mature trees that suggest the former presence of Burnet Woods on this site.

Berms

Hargreaves unifies the landscape of the DAAP complex through the use of a series of serpentine earthen forms that edge the long and winding form of the Aronoff Center as it edges Martin Luther King Jr. Boulevard. The berms are generally maintained in turf grass.

Tree plantings

Periodically, groups of trees are planted in association with the berms. Tree species observed in association with the berms include red maple, hawthorn, flowering cherry, hophornbeam, and green ash.

Mature trees

The Hargreaves design incorporated existing mature shade and ornamental trees occupying the knoll at the intersection of Clifton Avenue and Martin Luther King Jr. Boulevard. Species include pin oak, little leaf linden, green ash, hackberry, maple, Kentucky coffeetree, and redbud.
The design for DAAP also includes areas of ornamental plantings, particularly in association with building drop-off and entrance areas. Species observed include yew, liriope, daylilies, and ornamental grasses.

As the landform along Martin Luther King Jr. Boulevard spills downhill, the landscape design incorporates sculpted slopes at key moments or in association with regulating lines of the Aronoff Center. Some of these slopes have been planted with groundcover such as euonymus.

The design also incorporates large areas of turf lawn to serve as a foreground to the Aronoff Center and support this area’s role as a campus gateway.

Other gateway elements associated with the design include a campus identity sign. The sign, located near the intersection of Clifton Avenue and Martin Luther King Jr. Boulevard, is comprised of Briarhill sandstone with a granite cap and bronze letters identifying the school by name.

A sign identifying the DAAP complex stands on the hill overlooking Clifton Avenue. The character of the concrete sign is consistent with the design of the Aronoff Center.

New tree plantings have been added in the vicinity of the sign. These are planted in very regular rows and a grid pattern that stands in direct contrast to the pastoral arrangement of trees surviving from Burnet Woods.

Along the eastern end of the Aronoff Center building, a concrete wall steps downhill. Plantings associated with the wall are geometric and grid like in their organization.

Set into the hillside along the road and sidewalk along Martin Luther King Jr. Boulevard is a concrete retaining wall that affords manhole access. It is enclosed within a chain-link cage.
Conditions
Erosion and loss of groundcover

The steeper slopes of the DAAP landscape are experiencing some erosion.
Eden Quadrangle is a planned open space that will complement the expanded Medical Sciences Building. It will feature granite seat walls and steps, a large plaza, an outdoor amphitheater, and trees.

Exterior Features

Eden Quadrangle was under construction during the development of the Campus Heritage Plan and has thus not been evaluated in this study.

Levine Park and Kresge Circle border Eden Quad on the east side and ties the landscape of the old Medical Sciences Building with the new Eden Quadrangle and CARE/Crawley Building.
Library Square is a pedestrian plaza that links the Engineering Research Center, Langsam Library, and Zimmer Auditorium. It sits at grade, one story below the Zimmer Roof Garden. The surrounding buildings and terrace that edge the square form a strong volume of space within the square. The plaza’s character is derived from the paving pattern, which forms a nautilus. The space is small and intimate, but has an urban feel. There are no plantings within the central portion of the plaza due to the weight restrictions associated with the plaza’s siting above an underground garage. The paving is composed of cast concrete and colored concrete pavers. The nautilus, which is thought to express the perfect symmetry of nature, is a form with an ever-expanding expression and likely symbolizes the academic institution’s unending pursuit of knowledge.

Library Square plaza is a sculptural space dominated by the nautilus form of the paving pattern. Pyramidal lighting features set in a grid are juxtaposed against the curvilinear forms of the nautilus, which is expressed primarily in paving but also extends vertically to form a seatwall. Plantings along the margins of Rhodes and Zimmer Halls provide seasonal interest and color.

Designed by architect Wes Jones, the staircase that connects Library Square with the Zimmer Roof Garden is comprised of painted aluminum handrails, reddish purple in color, steel steps, and glass panels.

To add verticality to the open plaza, Hargreaves Associates provided whimsical lighting in the form of steeply pitched neon pyramids placed in a grid in front of the Langsam Library entrance. The pyramids are lit at night.
Library Square

Plaza paving

The nautilus that forms the paving and a seatwall feature within the plaza is composed of mortared colored concrete pavers edged by concrete bands.

Central engraved steel circle

The center of the nautilus features a steel plaque inscribed with a quote attributed to Oliver Wendell Holmes: “A mind that is stretched to a new idea never returns to its original dimension.”

Granite seatwalls and steps

The northern edge of the nautilus is expressed in a curvilinear granite seatwall and stair system. The seatwall and stair take up the change of elevation across the plaza. The western edge of the nautilus rises to meet the circular middle section edged by the seatwall, affording an accessible route through the plaza.

Tree plantings

Tree plantings provide a transition between the plaza and the Rhodes Hall façade. Tree species include green ash, black gum, southern magnolia, weeping cherry, and columnar red maple.

Shrub and perennial

Shrubs and perennials are planted in the tree planting beds near the entrance into Rhodes Hall and behind the seatwalls and benches near the Langsam Library entrance. Plantings include hosta, daylily, ornamental grasses, juniper, pachysandra, sedum, and honeysuckle.

Stairs to Woodside Drive

Concrete stairs lead from Library Square toward Woodside Drive, the two parking garages located along the road, and Campus Green. Black metal handrails edge the stairs.

ADA-accessible route to Woodside Drive

A concrete accessible route parallels the stair system. The walk is edged by a low concrete curb. Planting beds that include juniper, sedum, honeysuckle, flowering cherry, and mums edge the switchback form of the ramp system.

Seating at library

Brick and concrete walls help form a seating area in front of the Langsam Library. The face of the wall undulates to form niches that house metal benches. The walls can also serve as seatwalls.

Appendix C 32
Temporary directional signage

As has been used elsewhere on campus, there are directional signs like the one shown on the right indicating routes to nearby features such as the parking garage. The signs are composed of wooden posts, a directional arrow, and a wooden support used to train ornamental vines such as honeysuckle. These are intended to be replaced with permanent signage.
The Jones staircase connecting Library Square with the Zimmer Roof Garden acts as a short cut to the Schneider Quadrangle and McMicken Commons. Rieveschi Hall is pictured on the right.
MainStreet is a linear and curvilinear pedestrian open space system that extends from University Plaza to the Campus Recreation Center and is flanked by nodes for sitting and dining.

Highly urban in nature, the MainStreet landscape is entirely paved with a consistently applied palette of colored concrete pavers, granite stairs that double as seating, black painted metal site furnishings, street tree plantings, and a lively interaction with the buildings and wall systems that form the volume of space that is MainStreet. Master planner George Hargreaves in fact envisioned MainStreet as a vibrant urban center to the campus to which the students would gravitate when not in class. The sense of center and invitation for university community members to gather was a critical need to effect the university’s goal of becoming a residential rather than a commuter campus.

The connection between the interiors of the buildings and the streetscape is highly fluid. Of note also is the relationship between one of the resting places along MainStreet—Bearcat Plaza—which overlooks the football stadium. (See separate matrix for the plaza.)
The circulation corridor curves through a series of dynamic buildings, many of which have large glass facades that help blur the distinction between inside and outside along the corridor. The corridor is entirely ADA accessible.

Image right: view further along the corridor.

Paving throughout MainStreet is unified in materials and character. The primary material of the pedestrian corridor is interlocking colored concrete pavers set tightly together. In association with tree plantings, the pavers are set with gaps between them to allow light and air to penetrate the paving. The cohesive pavement treatment provides a unified identity for the streetscape and plazas that comprise MainStreet. The colored concrete ranges from pink to gray.

The margins of the streetscape are often edged by granite seatwalls that offer space for seating, gathering, performing, and eating, and help to contain space.

Lighting also occurs through overhead luminaries. Lighting fixtures throughout MainStreet are the plaza disc lights. Light poles are fitted with banner hangers. The banners reflect the graphic identity of MainStreet.

Circular uplights are installed linearly along MainStreet within the pavement.

A standard tree grate is utilized consistently throughout the corridor.

Ginkgos are planted along the edge of MainStreet where sun levels allow. Also present are Chinese elm.
MainStreet

Slotted drains

Slotted drains that are consistent in material and character with other metal features such as tree grates are also used consistently throughout the corridor.

Bike racks

Bike racks are also standardized throughout the corridor, and the black painted metal material is consistent with other site furnishings utilized within the MainStreet landscape.

Tables and chairs

Black metal tables and chairs provide seating for eating within the corridor, namely near Bearcat Plaza and in association with the Tangeman Center. The character of these features is consistent with other metal site furnishings within the corridor.

Engineering Research Center Entrance Plaza

MainStreet provides a connection to the entrance of the Engineering Research Center. Features associated with the entrance include trees (little leaf lindens, oaks, ash), bike racks, and seatwalls.

Circular turnaround

The lower end of MainStreet is marked by a circular vehicular turnaround. The center of the turn-around is used as a planter, with petunias and cotoneaster present during October 2006 field investigations.

Fire-vehicle egress

MainStreet is engineered to support fire trucks and other emergency vehicles.

Conditions

Open-spaced pavers

The aggregate material utilized to fill the space between open laid pavers associated with street trees is problematic from a maintenance perspective. The material must be stockpiled for use when needed as the material is prone to being blown out of the spaces between pavers. Users also complain of shoe heels getting stuck in the spaces between pavers.

Cracked concrete

Some of the concrete slabs and steps that edge the plaza are cracked.
McMicken Commons was the first open space completed as part of the University’s Master Plan. The commons is a major gathering place for students, faculty, and visitors. Located at the top of MainStreet it is flanked by McMicken Hall, Tangeman University Center, University Pavilion, and Braunstein Hall.

McMicken Commons is a large rectangular open space that establishes a unified sense of place between numerous buildings of a variety of architectural styles and functions, and connections to other spatial patterns and ‘force fields.’ McMicken Hall, shown right, is one of the primary features edging the commons.

The central bay and tower of McMicken Hall are axially related to the central focal point of the Tangeman University Center sited across the commons from McMicken. A central tower and columned portico mark the center of the building.

Much of the McMicken Commons landscape is characterized by turf lawn cut by concrete walks connecting the various buildings and places within the commons and beyond. Much of the greensward is elevated topographically from the surrounding area. Low retaining walls, that double as seatwalls, edge the greensward.
McMicken Commons

Granite seatwalls

The McMicken Commons greensward is edged to its east by a polished granite retaining wall that works as a seatwall. The granite is consistent with material utilized in many other landscapes on the campus.

Interlocking paver walks and plazas

The landscape in front of the Tangeman Center is characterized by elements associated with nearby MainStreet. The paving materials, site furnishings, and broad steps that can double as seating are representative of the MainStreet palette, helping to connect the commons with this major circulation thoroughfare.

Café seating

Outside of the Tangeman Center there are tables and chairs, with umbrellas, for café use. These, too, are consistent with the features utilized in the Main Street design palette.

Benches

Another feature of the commons area associated with Tangeman is a seating area with London plane trees, trash receptacles, and a series of black painted metal benches. The site furnishings and the tree grates again are consistent with the MainStreet design palette.

Older tree plantings

The commons includes an area in its east central section where older trees have been retained, including oaks and Bradford pear. Chinese elms are used as street trees along MainStreet as it abuts McMicken Commons.

New tree plantings

The landscape of McMicken Commons is primarily open through the center where the axial connection between McMicken Hall and Tangeman occurs. The edges of the commons have been planted with deciduous trees, however. Shade trees are planted in a grid outside of the Tangeman Center as well as University Pavilion. Species include Japanese pagoda trees, sterling silver lindens, and sawtooth oaks.

Preview Pavilion

A large pavilion structure—referred to as Preview Pavilion—occupies the central area in front of McMicken Hall. The structure is utilized as an informational kiosk for events and activities.
Walks

Walks throughout the McMicken Commons landscape are constructed of concrete. Stairs are used to navigate changes in elevation, but there is also a universally accessible route through the landscape.

Shrub plantings

Multiple paths converge in front of McMicken Hall. The areas between some of the paths are planted with shrubs and groundcover. Ornamental grasses are part of the planting design palette as shown.

Groundcover slope plantings

Bearberry cotoneaster is the primary groundcover plantings utilized within the commons. It is used particularly on slopes and banks.

Asphalt vehicular access

An asphalt paved access road leads into the commons with the Clifton Arc.

Foundation plantings associated with McMicken Hall

Trees, shrubs, and groundcover are used in foundation plantings associated with the east façade of McMicken Hall. Species include red maple, pin/scarlet oak, cotoneaster bank planting, linden, euonymus, and privet.

Ornamental handrails

The stairs that lead from McMicken Hall to the commons have ornamental metal handrails consistent with those utilized on the Clifton Arc side of the building.

Brick landing

On the east side of McMicken Hall is a low brick landing. The landing is raised approximately 4-6 inches above the surrounding concrete walks. The bricks are dark red with a glossy finish.

Light pole

The area around McMicken is treated slightly differently with an historic standard light pole.
McMicken Commons

<table>
<thead>
<tr>
<th>Trash receptacles</th>
<th>Lighting</th>
<th>Tree grates</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| Metal trash receptacles consistent with University standards are utilized throughout the commons. | Lighting within the commons is the plaza disc light standard used elsewhere on campus. | The tree grates used in the plaza are also of a different style. The design is more ornate. | Single step rise of brick

<table>
<thead>
<tr>
<th>Bank erosion</th>
<th>Axial view obscured</th>
<th>Walks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The slopes of the commons, particularly in association with the concrete stairs, are subject to erosion. Bank plantings are utilized to stabilize the earth, but erosion is currently a problem in some places.</td>
<td>The Preview Pavilion structure obscures the axial view between McMicken Hall and the Tangeman Center.</td>
<td>Walks are paved as the need arises given the circulation routes preferred by the students. In some cases, the pavement has taken on an additive appearance. Erosion along the walk in the upper left section of the photograph illustrates another segment that may require additional paving.</td>
</tr>
</tbody>
</table>
Sigma Sigma Commons was one of the first signature landscapes established at the University of Cincinnati campus based on the Hargreaves master plan. This sculptural open space edges French Hall and forms the southern terminus of the Campus Green. Extending over three acres, Sigma Sigma Commons features a greensward, walkways, undulating landforms, and the focal piece—a 3,500-seat amphitheater/performance space with terraced lawn panels edged with granite stairs that double as seating. Sigma Sigma Commons was designed as a flexible open space that could accommodate many uses.

The primary feature of Sigma Sigma Commons is the broad amphitheater that edges French Hall. Formed from sculptural geometric landforms edged by granite stairs that act as seating, the amphitheater works internally, but also contributes to the connection of various force fields working across the space with its diagonal cuts and lines.

A linear system of concrete walks edges the Sigma Sigma Commons landscape and provides an axial connection to the Engineering Research Center.

One of the standard materials utilized on campus is granite. The amphitheater stairs and seating is formed from linear slabs of granite.
Lawn panels
In between the granite risers there are lawn panels.

Ball-in-basket luminaire
The lighting standard utilized within the Sigma Sigma Commons landscape is the ball-in-basket luminaire.

Tree plantings
Concrete walks also lead from the straight walk toward the complex of buildings that includes the Armory Fieldhouse, French Hall, Campus Recreation Center, and CRC Student Residence Hall. The walks are edged with red maple trees.

Bank plantings
Sculptural earthen forms also edge the walks within the Sigma Sigma Commons landscape. Some of these have steep slopes that are difficult to mow. The turf grass has been replaced in some areas with ground cover plantings that do not need to be mown.

Etched granite identity sign
An etched granite panel is inset within the concrete sidewalk marking the beginning of the Sigma Sigma Commons landscape.

Conditions
Luminaires
The ball-in-basket luminaires utilized in many parts of the campus cast light upward. This light fixture type is not consistent with green building standards and light pollution diminishment goals.

Euonymus
The euonymus vine that has been planted in many locations around the campus is considered an invasive alien plant species that causes disruption of native ecosystems.

Liriope
Liriope planted on a bank beneath an overhang of the CRC Student Residence Hall and Campus Recreation Center is chlorotic and receives little sunshine.
The landscape is almost entirely open and exposed; there are no trees or shelter elements. The space is underutilized and not popular, it is thought, because of the lack of shade and shelter. The intention for the space—activation and performance—has never been realized. It is not a choice for congregational assembly.

The university is interested in considering the possibility of adding shade trees to the terraces of the amphitheater portion of the landscape to make it more amenable and attractive to students.

Maintenance vehicles access areas requiring work by driving on the sidewalks in some cases. Trucks pulling over to the side of the walks tend to damage the irrigation system heads that are typically located alongside the walks.

A mulch walk leading toward the Engineering Research Center from Sigma Sigma Commons is unusual for the campus, and does not contribute to the visual appearance of the area.
University Commons

University Commons is located on the East Campus. It unifies a collection of buildings along Martin Luther King Jr. Boulevard, including Proctor Hall, the Kingsgate Conference Center, and the Vontz Center. The commons features a spray fountain, two mounds, sinuous berms, and sculptural works.

Edwin B. Ahrens Family Fountain

University Commons is a large open space that joins the disparate architectural elements around it: Proctor Hall, University Hall, the Kingsgate Conference Center, and the Vontz Center. The focal point of the landscape is the Edwin B. Ahrens Family Fountain, which is broad, gently sloping, and accessible.

Mound (accessible)

Two sculptural landscape forms edge the fountain to its west. These mounds are conical and pyramidal in their earthen form. The conical mound is planted in fescue, and is punctuated at its apex with a circular planting of hornbeams. A concrete walk leads to an overlook space set within the circular planting of trees.

Pyramid (inaccessible)

The pyramidal mound is not accessible; there is no walk leading to its apex. The mound is planted in wintercreeper euonymus.

Serpentine berms

A series of four serpentine berms leads the eye on a merry chase between Martin Luther King Jr. Boulevard and the side and rear façade of the Vontz Center. The berms are planted in turf grass.
A large bronze sculpture of a leaf links a brick plaza behind the Vontz Center with the fountain that serves as the centerpiece of University Commons.
University Commons

A large area of brick paving edges the retaining wall below the Kingsgate Conference Center and the stairs leading down to the University Commons landscape. The brick plaza provides a connection to the circular mound as well as Proctor Plaza. Backless concrete benches are available for seating.

The brick walk leading to the prospect atop the circular mound also extends between the two mounds.

Lighting within the brick plaza area as well as the walkway and outdoor café area above include the plaza disc light seen elsewhere on campus as well as small ball-in-basket fixtures on the columns.

The pyramidal mound is planted in euonymus, which is an invasive alien species.
At the apex of the accessible mound, the view from this key point of prospect is entirely blocked by the circular planting of European hornbeam trees.

The black paint on the handrails associated with the stair leading down to University Commons is peeling.

The mounds have evidenced problems of fungus and patching along their bases. Maintenance personnel are constantly mindful of the need to be on top of such problems as soon as they arise or else they can get out of control quickly.

Resodding of the mounds has been necessary in the past.
The Zimmer Roof Garden is a rectangle of open space that fronts Rieveschl Hall atop Zimmer. A pedestal paver walkway system allows free access across the space. Skylights pop up through the plaza that light the corridors of Zimmer. Planting beds in geometric configurations edge the walks. These are planted in grass, trees, shrubs, and perennials. A metal staircase leads down to Library Square below.

Skylights

The Zimmer Roof Garden sits above Zimmer Hall. A line of skylights provides natural daylight for corridor spaces below. The design of the skylights is contemporary and geometric, in keeping with the contemporary feel of the remainder of the garden design. The rose-colored metal frames are also consistent with other elements of the design.

Walk system

Paths within the plaza lead directly north/south from the Baldwin Quad area and between building entrances. Straight paths lead between the two north/south paths in front of the two buildings. These paths are lined with benches.

Diagonal paths lead across the plaza. The diagonal paths intersect in a number of locations, establishing a series of angled spaces between. The spaces are planted with perennials and turf.
Zimmer Roof Garden

<table>
<thead>
<tr>
<th>Concrete pavers</th>
<th>Planting beds</th>
<th>Sculpture</th>
<th>Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Concrete pavers**: Paving within the garden is composed of pedestal-style concrete pavers. Paths are constructed of either a pebble-finish white concrete ("sidewalk"), or a random arrangement of gray- to-rose-colored pavers reminiscent of pavers utilized on Main Street ("Academic Ridge").

- **Planting beds**: Much of the plaza is planted in perennial and dwarf shrubs, although there are also tree plantings such as hawthorns. Key plants of the design include: dwarf arborvitae, aster, Siberian iris, Johnson’s blue cranesbill, phlox, sedum, gayfeather, lavender, Shasta daisy, liriope, and pachysandra.

- **Sculpture**: The southeast quadrant of the roof garden features a sculpture by Kenneth Snelsen. The work is uplighted for nighttime effect.

- **Lighting**: Ball-in-basket lighting as well as lower path lights are utilized within the plaza.

Metal stair leading to Library Square

- **Metal stair leading to Library Square**: A steep flight of metal stairs with metal handrails inset with glass panels leads to Library Square below the Zimmer Roof Garden.
Photography for Appendix C was supplied by John Milner Associates, Inc. and courtesy of the following offices of the University of Cincinnati:
- Academic Health Center Photo Services
- Administration and Finance, Planning + Design + Construction
- University Libraries
- Archives & Rare Books Library
- University Digital Collections
- University Photo Services
Acknowledgments

We would like to thank the following individuals for their contributions to the Campus Heritage Plan.

University of Cincinnati
Division of Administration and Finance
Planning + Design + Construction
Mary Beth McGrow, AIA, LEED AP
Associate Vice President/University Architect
Lucy Cossentino-Sinnard, BSD
Environmental & Graphic Designer
Leonard Thomas, MS
Project Manager, Landscape
Nnamdi Elleh, PhD
Associate Professor of Architecture, DAAP
Crystal Sherron, BA
Information Tech. Analyst/Designer
Grania Frueh
Production Designer

John Milner Associates, Inc.
Historic Preservation and Cultural Resource Services
Charles S. Raith, AIA, LEED AP
Principal in Charge
Peter C. Benton, AIA
Preservation Planner
Liz Sargent, ASLA, LEED AP
Cultural Landscape Planner
Christopher Quirk, AIA, LEED AP
Architect
Abdulla R. Darrat
Architectural Field Assistant
Jacky Taylor
Architectural Historian